



# Assessment of Water Quality Status in Gilgit-Baltistan

-----

Mufeezah Ahsan Hifza Rasheed Muhammad Ashraf Kiran Anwaar

Pakistan Council of Research in Water Resources (PCRWR) 2021

## Citation:

Ahsan, M., H. Rasheed, M. Ashraf, and K. Anwaar, (2021). Assessment of Water Quality Status in Gilgit-Baltistan. Pakistan Council of Research in Water Resources (PCRWR), pp. 42.

© All rights reserved by PCRWR. The authors encourage fair use of this material for non-commercial purposes with proper citation.

ISBN: 978-969-8469-77-1

#### Disclaimer:

The views expressed in this report are those of the authors and not necessarily those of the institution.

# Assessment of Water Quality Status in Gilgit-Baltistan

Mufeezah Ahsan Hifza Rasheed Muhammad Ashraf Kiran Anwaar

Pakistan Council of Research in Water Resources 2021

# **Table of Contents**

| List of Figures                                              | ii  |
|--------------------------------------------------------------|-----|
| List of Tables                                               | iii |
| Acknowledgements                                             | iv  |
| Summary                                                      | v   |
| Introduction                                                 | 1   |
| Water Resources of Gilgit-Baltistan                          | 5   |
| Domestic Water Supply System of Gilgit-Baltistan             | 6   |
| Water Quality Assessment                                     | 9   |
| Sampling Design                                              | 9   |
| Sampling Methodology                                         | 9   |
| Results and Discussion                                       | 13  |
| District Wise Water Quality Status                           | 13  |
| Parameters Wise Water Quality Profile                        | 14  |
| Microbial Contamination                                      | 16  |
| Total Dissolved Solids (TDS)                                 | 17  |
| Turbidity Contamination                                      | 17  |
| Fluoride Contamination                                       | 19  |
| Iron Contamination                                           | 19  |
| Trace Metals Contamination                                   | 20  |
| Dissolved Oxygen (DO)                                        | 21  |
| Source Wise Summary of Results                               | 22  |
| Conclusions                                                  | 24  |
| Recommendation and Way Forward                               | 24  |
| Disinfection of Unsafe Water                                 | 24  |
| Identification of Alternate Source                           | 24  |
| Proper Disposal of Wastewater                                | 24  |
| Regular Monitoring, Capacity Building and Awareness Campaign | 25  |
| References                                                   | 26  |

# List of Figures

| Figure 1: Map of Gilgit-Baltistan                                                 | 4  |
|-----------------------------------------------------------------------------------|----|
| Figure 2: Rivers in Gilgit-Baltistan                                              | 5  |
| Figure 3:Schematic diagram of Gilgit-Baltistan water supply system                | 6  |
| Figure 4: Piped water distribution in Jutal area                                  | 7  |
| Figure 5: Piped water supply in Chilas city                                       | 8  |
| Figure 6: Water supply in Diamer                                                  | 8  |
| Figure 7: Young girls fetching water from broken water supply lines               | 8  |
| Figure 8: Water supply by WSSA                                                    | 8  |
| Figure 9: Sampling locations in Gilgit-Baltistan                                  | 10 |
| Figure 10: Water sample collection from Diamer                                    | 11 |
| Figure 11: Water sample collection from Gilgit                                    | 11 |
| Figure 12: Determination of onsite DO and record keeping                          | 11 |
| Figure 13: District wise unsafe samples                                           | 14 |
| Figure 14: Potential problem parameters in water sources of Gilgit-Baltistan      | 15 |
| Figure 15: District wise microbial contamination (%)                              | 16 |
| Figure 16: Spatial variation of microbial contamination                           | 16 |
| Figure 17: Drinking water contamination with wastewater channel                   | 17 |
| Figure 18: Water tap installed on the corner of water drainage line               | 17 |
| Figure 19 : Level of total dissolved solids in water sources of Gilgit-Baltistan  | 18 |
| Figure 20: Locations with unsafe turbidity in Gilgit-Baltistan                    | 18 |
| Figure 21: Locations with unsafe Iron in Gilgit-Baltistan                         | 19 |
| Figure 22: Locations with unsafe Aluminium level in Gilgit-Baltistan              | 20 |
| Figure 23: Dissolved oxygen concentration in rivers and lakes in Gilgit-Baltistan | 22 |
| Figure 24: Source-wise percentage of unsafe samples                               | 23 |
|                                                                                   |    |

# List of Tables

| Table 1: Water quality | parameters and methods used for analysis                           | 11 |
|------------------------|--------------------------------------------------------------------|----|
| Table 2: District wise | water quality status of Gilgit-Baltistan                           | 13 |
| •                      | tatistics of major water quality parameters in six districts of an | 15 |
|                        | water quality status of monitored water sources in Gilgit-         | 23 |

# Acknowledgements

Authors are grateful to Ms. Saiqa Imran, Ms. Rahila Noureen, Ms. Rizwana Perveen, Ms. Irum Gul, and Ms. Farah Naz for testing of all water samples. Many thanks and appreciations go to Mr. Shafiq-ur-Rehman, Dr. Fauzia Alataf and Mr. Muhammad Asghar for analytical data quality control. The authors are also thankful to Mr. Tariq Mahmood, Mr. Sohail Anjum, and Mr. Zeeshan Munawar for data entry and composing the report. Sincere gratitude is due to Mr. Ghulam Haider and Mr. Muhammad Mushtaq for water sampling and transportation of samples from the remote hilly terrains. The financial support of The Asia Foundation, a non-profit international development organization is highly acknowledged.

# Summary

Gilgit-Baltistan (GB) is house of world's second highest mountain peak surrounded with more than 7000 glaciers. The snow and glacial resources of the Himalayan region are a major source of fresh water for the Indus basin irrigation system. The sustenance of millions of people depends on this system.

Considering the reported prevalence of water borne diseases as well as SDG 6.1 reporting requirements, a water quality assessment of GB region was undertaken by PCRWR in collaboration with The Asia Foundation (TAF). In this context, 94 samples were collected from source and point of use (PoU) including snowmelt runoff, springs, groundwater and rivers. These samples were collected from 94 villages in six districts (Gilgit, Skardu, Astore, Hunza, Ghizar and Diamer). All the collected samples were tested for microbiological contamination in the PCRWR Laboratory at Gilgit. The samples for chemical testing were transported to the ISO-17025 accredited National Water Quality Laboratory, PCRWR, Islamabad.

The physico-chemical, heavy metals and microbial parameters were compared with the permissible limits of National Standards for Drinking Water Quality (NSDWQ-2010). Overall, 22% sources were found supplying safe water and remaining 78% were unsafe mainly due to the prevalence of microbial contamination (68%), turbidity (19%), iron (24%), fluoride (2%) and aluminium (7%). The highest unsafe water sources due to microbiological and/or chemical contamination were found in the district Astore (100%) followed by Skardu (80%), Hunza (80%), Ghizar (74%), Gilgit (70%) and district Diamer (67%). The source wise comparison shows that rivers are highly contaminated (100%) followed by snowmelt runoff in surface water channels (82%), fresh spring water (80%), and ground water (29%).

The residents in the villages of GB are either living near springs, lakes and rivers or they are fetching water from some nearby storage tanks. These sources are either community developed or developed by local NGOs and need the facility of basic water treatment such as filtration and disinfection to reduce the risk of waterborne diseases. The mineral mining of mafic, igneous minerals and gemstone deposits may also be adding chemical contaminants such as iron, aluminium etc. Moreover, the activities under CPEC programme, disposal of untreated wastewater and agricultural practices may also add to these potential contaminants in surface water bodies.

The water quality improvement requires arrangements for water filtration, disinfection, wastewater disposal and recycling, capacity building of local agencies for water quality monitoring, awareness raising of villagers towards safe storage practices and environmental protection. The study findings also suggest a well-designed investigation for impacts of mining on water resources, to rule out the heavy metals contamination and to develop mitigation strategies.

# Introduction

Water is essential not only for human health but also for poverty reduction, food security, peace and human rights, ecosystem and environmental sustainability. Nonetheless, countries are facing growing challenges linked to water scarcity, water pollution, degradation in water-related ecosystems and international cooperation over trans-boundary water basins. Pakistan is among 37 countries of the world with extremely high levels of water stress, a condition when water demand exceeds the water availability or when poor quality restricts its use.

The World Resources Institute has placed Pakistan in extremely high water stress category by 2040 (Reig *et al.*, 2013). If this situation prevails as such and no actions are taken to improve availability of water and effective water conservation strategies. Similarly, Pakistan Council of Research in Water Resources (PCRWR) reported that if this situation continues i.e. population keeps on increasing and water resources remains constant, Pakistan will be touching the absolute water scarcity line (500 m<sup>3</sup>/person/day) by 2025 (Qureshi and Ashraf, 2019).

The level of access to safe drinking water varies from region to region in Pakistan. The Economic Survey of Pakistan, 2019-2020 indicated that supply of drinkable Water and Sanitation Services (WSS) requires special attention as presently a large number of households do not have access to enough potable or freshwater.

Though Pakistan has made some improvements in access to safe water over the years (15% safe in 2001 to 38% in 2021, as reported by PCRWR), (Rasheed *et al.*, 2020), country is still one of the top 10 countries with the lowest access to clean water (World Asia, 2018). Disposal and mixing of untreated wastewater in surface and groundwater as well as insufficient wastewater recycling has further exacerbated the health and environmental risks linked with unsafe water.

Gilgit-Baltistan is the house of world's second highest mountain peak and more than 7000 glaciers. Therefore, it is considered as Pakistan's largest source of fresh water for the Indus basin irrigation system (Ayub *et al.*, 2020). Many lakes and rivers originate from these freshwater glaciers and largest of them is the Indus river which feeds the irrigation system of Pakistan and therefore, glacial reserves of GB are considered to be water towers of Pakistan (Bakht, 2000; Malkani, 2020; Ashraf and Bhatti, 2019).

The communities in Gilgit-Baltistan get water directly from glacial melt running down in the valley streams. Disposal of untreated sewage, mining effluents in the upper Indus catchments, use of pesticides in agricultural fields and other anthropogenic activities have altered the physical, chemical, and biological condition of surface water resources. (Abbas *et al.*, 2015) Consequently, due to the presence of pathogenic organisms in drinking water (as reported by a local respondent), water borne diseases like diarrhoea, cholera, typhoid and hepatitis are common. Encroachment in the areas around the streams, cutting of forest for wood and agricultural land has affected the entire ecosystem.

Moreover, large-scale development work on energy, transportation, infrastructure, and industry under China-Pakistan Economic Corridor (CPEC) framework is being carried out in the upper Indus basin. These may have major impacts on quality of water resources around the country specifically in region of Gilgit-Baltistan. Therefore, it was required to assess the quality of water bodies used for drinking purpose across GB and to recommend further strategies to sustainably manage these vital resources. Pakistan Council of Research in Water Resources (PCRWR) in collaboration with The Asia Foundation has investigated the water quality at source and at point of use (PoU) as well as associated health impacts in six districts.

# **Study Area**

Gilgit-Baltistan also known as northern areas of Pakistan is located at 35.8026° N, 74.9832° E. Geographically, it spreads over an area of 72,971 sq. km. Afghanistan is at its north, in north east it borders with China and in south east there is Kashmir (Wolf, 2017). Gilgit-Baltistan became a single administrative unit in 1970, under the name Northern Areas and while on 29<sup>th</sup> August 2009, GB Self Governance Order 2009 was passed by Pakistan cabinet granting self-rule to the people of the northern areas (re-named as Gilgit-Baltistan) through an elected legislative assembly (CSCC, 2018). The population of GB is estimated to be between 1.5 to 2 million (Hussain *et al.,* 2018). It is administratively divided into three divisions; Gilgit (districts Gilgit, Ghizar, Hunza and Nagar), Baltistan (districts Skardu, Ghanche, Shigar and Kharmang) and Diamer (districts Diamer and Astore) as shown in Figure 1.

Topographically, the area consists of snow-covered mountains, glaciers and highlands. Springs, waterfalls, lakes and rivers flow out of these snow-covered mountains. The region is dominated by Karakoram and Himalaya mountain ranges. The "Hindu Kush" range lies to the west. Along other high mountain peaks like Nanga Parbat, it is house of the world's 2nd highest peak K2 and queen of hills the Nanga Parbat. The world's longest glaciers outside the Polar Regions are in Gilgit-Baltistan such as Biafo, Baltoro, Batura, Saltoro, Rimo, Terung, Hispar, Chogo Lungma and Panmah Kurakaram range. During winters, there is heavy snow fall on the top of these mountains while in summer by melting of snow and glaciers water flows down the hills in the form of streams and some water penetrate and form springs in valley (Ahmed *et al.*, 2012).

Climate is greatly influenced by the orography of this region which create rain shadows in most places, whereas relatively high precipitation falls in Astore district. During summers areas like Gilgit and Chilas are hot and sunny during day time but

cold at night. Astore, Shigar, Hunza, and Nagar valleys however, have mild temperatures during summers.

Gilgit-Baltistan do not receive much of the rains during monsoon as mountain ranges of Karakoram and Hindukush create a barrier between the monsoon dominated lands of South Asia to their south and the vast deserts of Central Asia to their north. Atmospheric temperature reaches to maximum in July and August with an average of 20-25 °C across valleys and minimum temperature in January with an average of to -10 °C.

Gilgit-Baltistan (GB) is also rich in minerals and other natural resources. Gemstones, marbles and many other economic minerals are significant for commercial industry. Gemstones of GB especially from Hunza and Skardu regions are famous worldwide. Therefore, mining is a huge industry in GB region where gem exploration utilizes water and produce wastewater which is ultimately disposed off into the nearby water channels and streams.

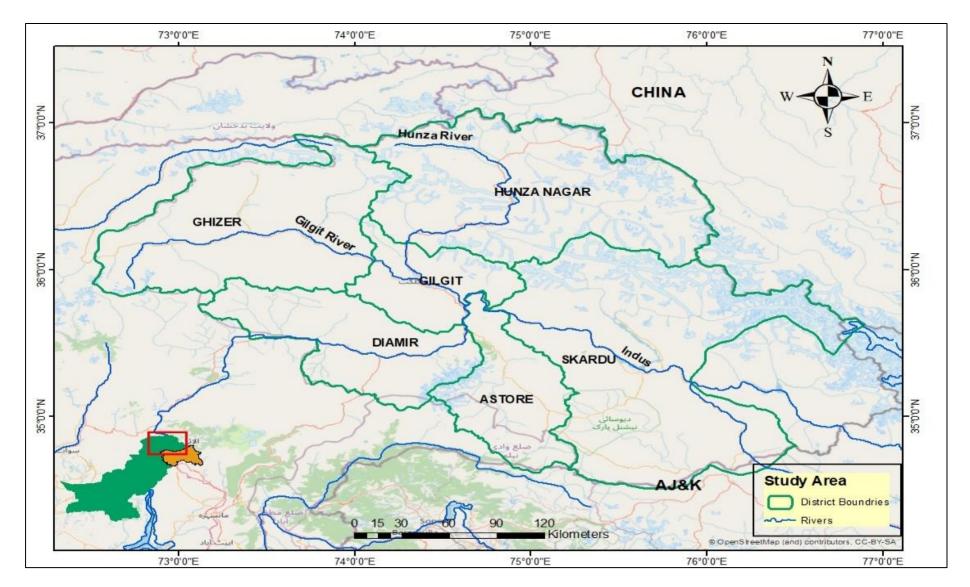



Figure 1: Map of Gilgit-Baltistan

#### Water Resources of Gilgit-Baltistan

The Indus basin is the largest irrigation system of the world. It is mainly fed by the Indus, the most important river in Pakistan, originating from the Tibetan plateau. It flows northwest through Ladakh district and GB just in south of the Karakoram Range then it passes through deep valleys near the Nanga Parbat. Due to freezing temperatures, flow of river decreases greatly in winters while increases in summer. The drainage basin is mainly fed by the Indus, Shyok, Nubra, Hushe, Shigar, Hunza, Shimshal, Chuparsan, Yasin, Ishkomen and Astore rivers apart from some glacial streams. There are several glacial and snow lakes in the GB mainly in district Ghizar and at Deosai high altitude plains shown as in Figure 2. (Nancy Cook and David Butz, 2013)

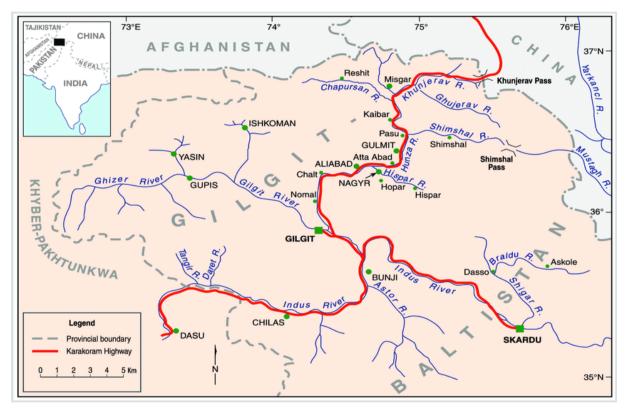



Figure 2: Rivers in Gilgit-Baltistan

# **Domestic Water Supply System of Gilgit-Baltistan**

Principal source of domestic and household water in the GB is glacial and snowmelt runoff in the form of streams, rivers, lakes and springs. Supply of fresh and flowing water is abundant during summer especially from April to August and then gradually decreases from September to November. Lateron there is snowfall during December to February which results in the shortage of drinking water in the rural areas. Villages at higher altitude use snowmelt, if no other water source is available. Snowmelt water is usually turbid, whereas spring water is clear and warm in winters and cold in summers therefore, spring water is preferred by inhabitants to be used for drinking either as piped or un-piped water (Figure 3).

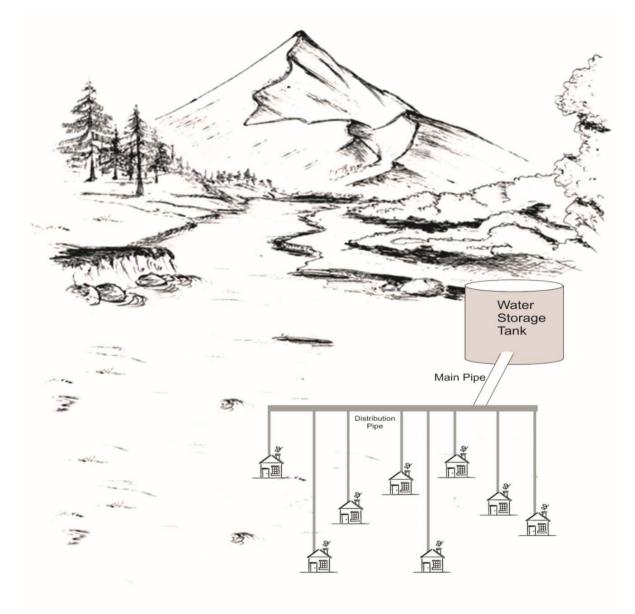



Figure 3:Schematic diagram of Gilgit-Baltistan water supply system

The Multiple Indicator Cluster Surveys revealed that 79% of the population of GB used an improved source of drinking water; 95% in urban areas, while 76% in rural areas. At division level, Gilgit division has the highest (89%), while Diamer division has the lowest percentage (47%) of improved water coverage (Planning & Development, 2017)

The common water supply system in most villages is piped water supply. Where water shortage is an issue, there is a tradition to store water in large pits during summer. Water stored in pits is used for drinking and other domestic purposes. Water pits situated near the water channels are usually covered. As natives use the same channels for drinking and washing, they fill the pits early in the morning with fresh water to avoid contamination from washing clothes, irrigation waste and other wastewater generating activities.



Figure 4: Piped water distribution in Jutal area

In Chilas most of the piped water is supplied to main yards from where local villagers can fill water. People need to walk more than 30 minutes to get drinking water from these piped facilities while in Diamer surface water is used either directly from rivers, lakes or through pipes from pond and canals (Figures 5 to 8). In villages where water is short, communities have developed indigenous systems for water distribution to overcome shortages. Communities have also developed systems to determine the quantity of water to be used by a single household.



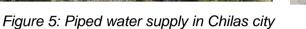





Figure 6: Water supply in Diamer



Figure 7: Young girls fetching water from broken water supply lines



Figure 8: Water supply by WSSA

Water accessibility and the quality of the available water is one of major challenges in GB. Approach to isolated and freezing glaciers in northern areas is another challenge, thus it is difficult to frequently assess quality of natural water used for drinking purpose. Therefore, only a few studies have been conducted regarding the spread of gastrointestinal diseases (Ahmed *et al.*, 2012).

# Water Quality Assessment

#### **Sampling Design**

The sampling is designed keeping in view the diversity of natural waterways and its use for drinking purpose. Six districts were selected from three divisions of Gilgit i.e. Skardu, Ghizar, Gilgit, Hunza, Astore and Diamer for village wise sample collection. Depending on the size of districts, 94 samples either from piped systems or from the sources were collected in September, 2020 at the rate of 10-15 samples per district (Figure 9). Source water was different for each sampling point but PoU at most of the locations was tap water. PoU samples were preferably obtained from taps by natives for their domestic needs. The detail of the sampling locations, information of type of source and approximate number of consumers as per sampling survey is given at Annexure-I.

#### **Sampling Methodology**

All water samples were collected, transported and tested for microbial and physicochemical analysis following the protocols of standard methods for water and wastewaters, 23<sup>rd</sup> edition (APHA,2017) (listed in Table 1). From each site four types of samples were collected. The details of collection and preservative method used for each sample are given below:

- 1. Type A All sites Pre-sterilized sampling bottles for microbiological analysis
- 2. Type B All sites 2 ml/liter nitric acid (HNO<sub>3</sub>) as preservative for trace elements
- 3. Type C All sites 1 ml/100 ml, 1 molar boric acid as preservative for nitrate
- 4. Type D All sites No preservative for other water quality parameters.

All samples were collected in polystyrene bottles of 500 ml. Prior to sample collection, bottles were washed with distilled water and rinsed thoroughly several times with the same water which is to be collected. For microbial analysis, samples were collected in pre-sterilized bottles of 200 ml and tested in the PCRWR water quality laboratory, Gilgit. Water samples (types B, C and D) collected for chemical analysis were transported to National Water Quality Laboratory, PCRWR, Islamabad. Field observations and information regarding each sample (such as sample type, sample ID, sample code, GPS coordinates, date and time of sample collection, physical conditions like water-table depth etc.) were recorded on the sample collection proforma (Annexure-II).

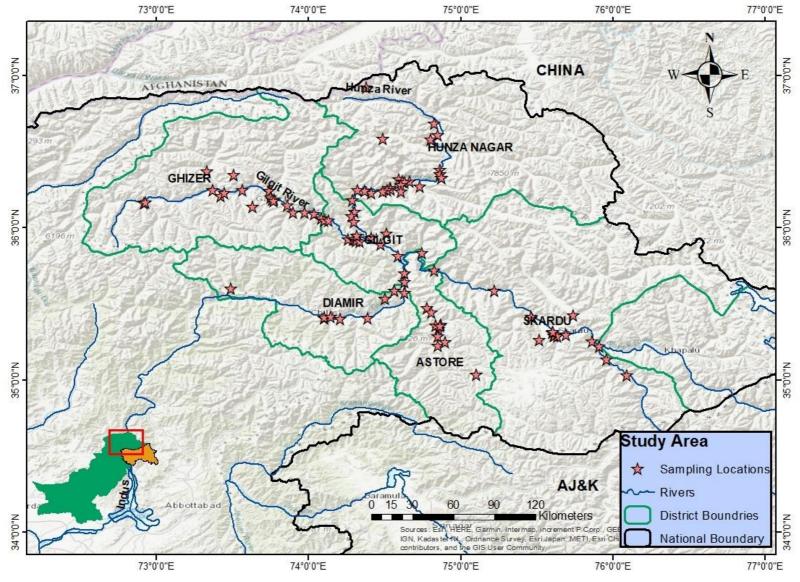



Figure 9: Sampling locations in Gilgit-Baltistan



Figure 10: Water sample collection from Diamer Figure 11: Water sample collection from Gilgit



Figure 12: Determination of onsite DO and record keeping

| Table 1: Water quality parameters and methods used for analysis |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| Sr.# | Parameters                                 | Analysis Method                                               |  |  |  |  |
|------|--------------------------------------------|---------------------------------------------------------------|--|--|--|--|
| 1    | Alkalinity (mg/l as<br>CaCO <sub>3</sub> ) | Standard Method No. 2320 (B)                                  |  |  |  |  |
| 2    | Arsenic (ppb)                              | AAS Vario 6, Analytik Jena AG, [Standard Method No. 3111 (B)] |  |  |  |  |
| 3    | Bicarbonate (mg/l)                         | Standard Method No. 2320 (B)                                  |  |  |  |  |
| 4    | Calcium (mg/l)                             | Ca-D, [Standard Method No. 3500 (B)]                          |  |  |  |  |
| 5    | Carbonate (mg/l)                           | Standard Method No. 2320                                      |  |  |  |  |
| 6    | Chloride (mg/l)                            | Titration (Silver Nitrate), [Standard Method No. 4500 (cl-B)] |  |  |  |  |
| 7    | Conductivity (µS/cm)                       | E.C meter, Hach-44600-00, USA [Standard Method No. 2510(B)]   |  |  |  |  |
| 8    | Hardness (mg/l)                            | EDTA Titration, [Standard Method No. 2340 (C)]                |  |  |  |  |

| Sr.# | Parameters                                                                                                                                            | Analysis Method                                                                               |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| 9    | Magnesium (mg/l)                                                                                                                                      | Standard Method No. 2340 (B)                                                                  |  |  |  |  |
| 10   | Nitrate as Nitrogen<br>(mg/l)                                                                                                                         | Cd. Reduction (Hach-8171) by Spectrophotometer [Standard Method No. 4500 (NO <sub>3</sub> B)] |  |  |  |  |
| 11   | рН                                                                                                                                                    | pH Meter, Hanna Instrument, Model 8519, Italy<br>[Standard Method No. 45= H <sup>+</sup> -B)] |  |  |  |  |
| 12   | Potassium (mg/l)                                                                                                                                      | Flame photometer PFP7, UK [Standard Method No. 3500-K (B)]                                    |  |  |  |  |
| 13   | Sodium (mg/l)                                                                                                                                         | Flame photometer PFP7, UK [Standard Method No. 3500 Na (B)]                                   |  |  |  |  |
| 14   | Sulfate (mg/l)                                                                                                                                        | SulfaVer4 (Hach-8051) by Spectrophotometer<br>[Standard Method No. 4500 (E)]                  |  |  |  |  |
| 15   | Phosphate (mg/l)                                                                                                                                      | Colorimeters (HACH) [Standard Method No.8190 and 8048]                                        |  |  |  |  |
| 16   | TDS (mg/l)                                                                                                                                            | Standard Method No. 2540 (C)                                                                  |  |  |  |  |
| 17   | Turbidity (NTU)                                                                                                                                       | Turbidity Meter, Lamotte, Model 2008, USA [Standard Method No. 2130(B)]                       |  |  |  |  |
| 18   | Fluoride (mg/l)                                                                                                                                       | ion-Selective Electrode [Method Standard No. 4500 (F-C)]                                      |  |  |  |  |
| 19   | Bacteriological<br>Contamination<br>(presence/absence)                                                                                                | PCRWR Qualitative Field Testing Kit (presence/absence)                                        |  |  |  |  |
| 20   | Heavy metals<br>(Aluminium (Al),<br>Cadmium (Cd),<br>Molybdenum (Mo),<br>Arsenic (As),<br>Chromium (Cr), Zinc<br>(Zn), Nickel (Ni) and<br>Barium (Ba) | APHA 23 <sup>rd</sup> edition ICP-OES                                                         |  |  |  |  |

# **Results and Discussion**

Major source of water in GB is snowmelt water. Residents of the selected villages either use this water directly from rivers, springs and streams or where it is difficult to fetch water they develop cisterns or ponds to supply water to remote areas. In total, 94 water samples were collected from different water sources including surface water channels (28), spring water (56), groundwater (7), Kharmang river, Attabad lake and Phandar river lake (3). The water quality status of GB with respect to district, parameters and monitored sources is described as below:

#### **District Wise Water Quality Status**

The results reveal highly unsafe water quality in district Astore (100%), followed by Skardu (80%), Hunza (80%), Ghizar (74%), Gilgit (70%) and district Diamer (67%) as shown in Table 2 and Figure 13.

| Sr # | District | Total | wi<br>perm | nples<br>thin<br>issible<br>nits | Samples<br>exceeding<br>permissible<br>limits |     | exceeding permissible                                                                              |  | Major Issues |
|------|----------|-------|------------|----------------------------------|-----------------------------------------------|-----|----------------------------------------------------------------------------------------------------|--|--------------|
|      |          |       | No.        | %                                | No.                                           | %   |                                                                                                    |  |              |
| 1.   | Astore   | 11    | 0          | 0                                | 11                                            | 100 | Turbidity (9%), Iron (55%) and Microbial contamination (82%)                                       |  |              |
| 2.   | Hunza    | 20    | 4          | 20                               | 16                                            | 80  | Turbidity (30%), Iron (20%), and Microbial contamination (70%)                                     |  |              |
| 3.   | Ghizar   | 19    | 5          | 26                               | 14                                            | 74  | Turbidity (11%) and Microbial contamination (68%)                                                  |  |              |
| 4.   | Diamer   | 9     | 3          | 33                               | 6                                             | 67  | Turbidity (22%), Fluoride (11%) and Microbial contamination (67%)                                  |  |              |
| 5.   | Gilgit   | 20    | 6          | 30                               | 14                                            | 70  | Turbidity (25%), Iron (20%) and Microbial contamination (60%)                                      |  |              |
| 6.   | Skardu   | 15    | 3          | 20                               | 12                                            | 80  | Turbidity (13%), Iron (60%), Fluoride (7%)<br>and Microbial contamination (67%)                    |  |              |
|      | Overall  | 94    | 21         | 22                               | 73                                            | 78  | Microbial contamination (68%), Turbidity<br>(19%), Iron (24%), Fluoride (2%) and<br>Aluminium (7%) |  |              |

Almost in all districts the major contaminant was of microbiological i.e. 82% of samples from district Astore were unsafe for human consumption due to microbial contamination. Similarly, Skardu (60%), Hunza (70%), Diamer (67%), Ghizar (68%) and Gilgit (67%) had the problem of microbiological contamination.

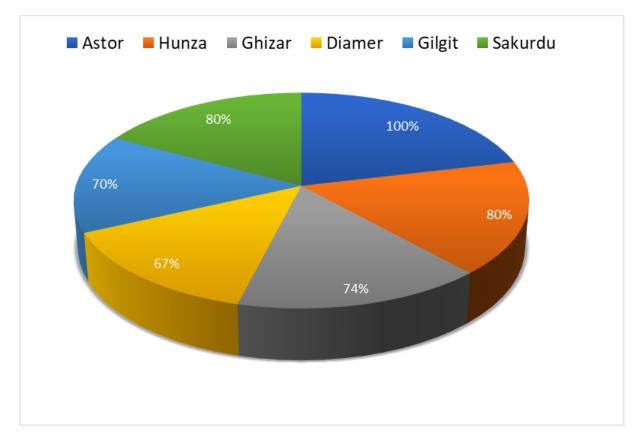



Figure 13: District wise unsafe samples

# **Parameters Wise Water Quality Profile**

The descriptive statistics of monitored water quality parameters are given in Table 3. It shows that quality of water from different sources was safe with respect to hardness, pH and TDS. However, turbidity, fluoride, iron and microbial contaminations were of main concern (Figure 14).

| Test Parameter                               | Unit            | Min.  | Max.    | Mean   | Samples exceeding the permissible limits |    |
|----------------------------------------------|-----------------|-------|---------|--------|------------------------------------------|----|
|                                              | •               |       |         |        | No.                                      | %  |
| EC                                           | µS/cm           | 44.00 | 1093.00 | 255.89 | -                                        | -  |
| рН                                           | -               | 6.50  | 8.85    | 7.60   | 1                                        | 1  |
| Turbidity                                    | NTU             | 0.04  | 270.00  | 7.57   | 18                                       | 19 |
| Hardness                                     | mg/L            | 10.00 | 470.00  | 116.44 | -                                        | -  |
| TDS                                          | mg/L            | 24.00 | 601.00  | 140.67 | -                                        | -  |
| Chloride                                     | mg/L            | 4.00  | 28.00   | 3.85   | -                                        | -  |
| Nitrate                                      | mg/L            | 0.03  | 8.00    | 0.81   | -                                        | -  |
| Fluoride                                     | mg/L            | 0.03  | 2.80    | 0.30   | 2                                        | 2  |
| Iron                                         | mg/L            | 0.00  | 1.49    | 0.15   | 23                                       | 24 |
| Total Coliforms<br>(Microbial contamination) | *CFU/<br>100 ml | 2     | 49      | 7.8    | 64                                       | 68 |

Table 3: Descriptive statistics of major water quality parameters in six districts of Gilgit-Baltistan

\*CFU: Colony forming unit

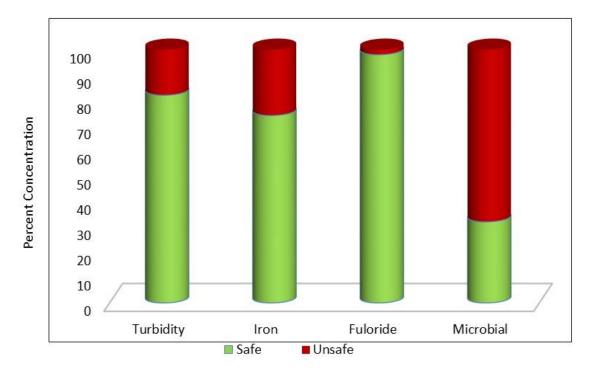



Figure 14: Potential problem parameters in water sources of Gilgit-Baltistan

Parameter wise details summary of results is discussed as below.

#### **Microbial Contamination**

Microbial pollution in aquatic environments is one of the critical issues with regard to the sanitary state of water bodies used for drinking water supply due to a potential contamination by pathogenic bacteria, protozoa or viruses. District wise comparison of microbial contamination (Figure 15 & 16) showed that water sources PoU in all districts were found contaminated with total coliforms i.e. Diamer (67%), Astore (82%), Gilgit (60%), Ghizar (68%), Hunza (70%) and Skardu (67%).

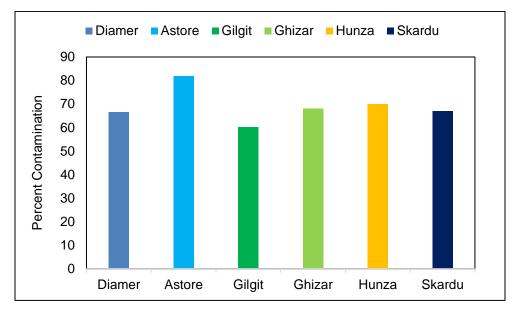



Figure 15: District wise microbial contamination (%)

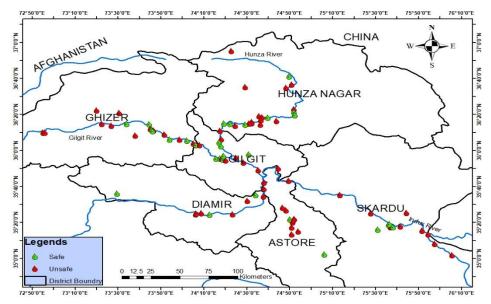



Figure 16: Spatial variation of microbial contamination

The most prevalent microbial contamination reveals the probability of mixing of sewage in drinking water supply pipelines. Very short distance between drinking water supply lines and sewage pipes is evident from Figure 17. The microbial contamination may result in frequent outbreaks of water related diseases like cholera, diarrhoea, typhoid, hepatitis A & E. Some such outbreaks have also been reported that affected many people in the GB.





wastewater channel

Figure 17: Drinking water contamination with Figure 18: Water tap installed on the corner of water drainage line

#### **Total Dissolved Solids (TDS)**

Total dissolved solids (TDS) are an overall estimation of the inorganic salts and small amounts of organic matter present in water and reflect an overall measurement of basic chemical water quality. The major constituents are usually calcium, magnesium, sodium, and potassium cations and carbonate, hydrogencarbonate, chloride, sulfate, and nitrate anions. TDS of GB samples are within acceptable range of National Standards for Drinking Water Quality (MOE, 2010) and WHO drinking water guidelines i.e. 1000 mg/L. As shown in Figure 19, TDS of most of the water sources was found comparable between districts except for few Skardu, Gilgit and Hunza. These districts are more populated and natural waters are more affected by anthropogenic activity.

#### **Turbidity Contamination**

Turbidity is caused by particles suspended or dissolved in water that scatter light making the water appear cloudy. Particulate matter may include sediment - especially clay and silt, fine organic and inorganic matter, soluble colored organic compounds, algae, and other microscopic organisms. Springs and streams originate from glacier melting and snow melt runoff in GB. Therefore, erosion results in increased turbidity in openly flowing water. During erosion, rock flour and other small soil particles mix with water while flowing down the mountains and turbidity level in water rises specifically in late spring season and during summers. Spring water is mostly preferred for drinking purposes, as it is thought to be clean and clear, relatively warm in winters and cold in the summers. As shown in Figure 20, most of the turbid water was present in Gilgit, Hunza and Skardu. These regions are more populous and agro-industrial activities are also common in these districts.

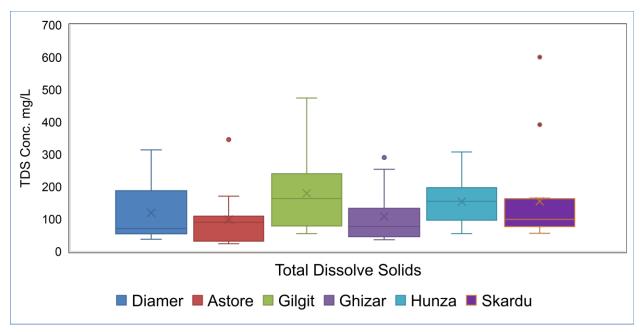



Figure 19 : Level of total dissolved solids in water sources of Gilgit-Baltistan

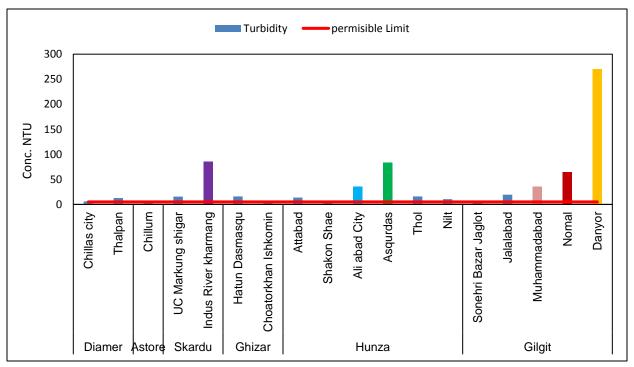



Figure 20: Locations with unsafe turbidity in Gilgit-Baltistan

#### **Fluoride Contamination**

Naturally occurring fluorides in groundwater are a result of the dissolution of fluoridecontaining rock minerals by water. Anthropogenic sources of Fluoride contamination phosphate fertilizers or sewage sludge, or from pesticides. Excessive fluoride level is another geological problem and consumption of such type of contaminated water may result in dental fluorosis, skeletal and crippling fluorosis. Excessive fluoride levels were found in 2% of the monitored water sources in GB (Table 3).

#### **Iron Contamination**

Following microbial contamination, the second most prevalent contaminant across the GB was iron. Mining of iron rich compounds such as pyrite, chalchopyrite, assenopyrite and gemstones like jade as well as rubies along with other minerals and rusted water pipes can be the probable reason for iron contamination. In-depth contaminant source tracking of the region is required to track mineral deposits and disposal requirements for mining waste. Though iron is one of important nutrient essential for human health, yet its higher concentration may cause iron toxicity if consumed for long periods.

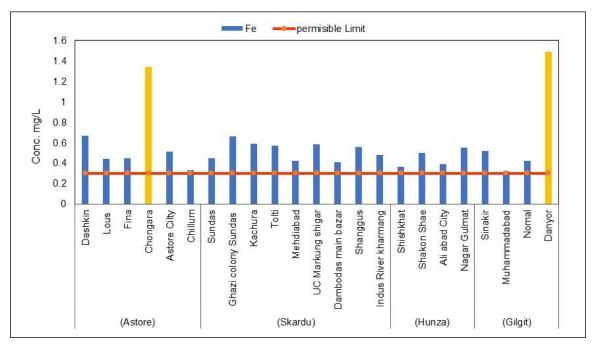



Figure 21: Locations with unsafe Iron in Gilgit-Baltistan

#### **Trace Metals Contamination**

Heavy metals are geologically occurring elements having an atomic weight and density five times greater than that of water. Heavy metals are usually present in trace amounts in natural waters but many of them are toxic for human and aquatic life even at very low concentrations. Trace Metals investigated in this study include (aluminium (AI), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)). Increasing quantity of heavy metals in the natural resources specifically water and food is an area of great concern. Test results of heavy metals reveals that arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), mercury (Hg), chromium (Cr), cobalt (Co), zinc (Zn), and selenium (Se) were found within the permissible limits of National Standards for Drinking Water Quality (MOE, 2010). However, aluminium (AI) was found in excess at six locations of districts Gilgit and Hunza with levels higher than 200  $\mu$ g/l (Figure 22). Since minerals mining is common in GB, the possible contamination source can be gemstone exploitation like quartz in Gilgit and Skardu; red ruby and spinel (compound of magnesium aluminate) in Hunza (Malkani, 2020).

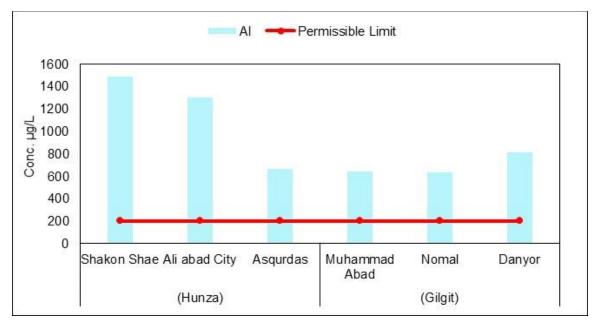



Figure 22: Locations with unsafe Aluminium level in Gilgit-Baltistan

Past studies have also reported that lead, chromium, cadmium, and copper exceeded in permissible limits in eight different villages of central Hunza (Shedayi *et al.*, 2015). Box.1 provides a quick view of mineral resources of the Gilgit-Baltistan as a possible insight of the mineral related heavy metals contamination in the water bodies of GB.

| Sr<br>No. | Minerals                                          | Location (Presence/source)                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | Arsenopyrite, chalcopyrite, malachite, and pyrite | Originated from Dainyor Nala (15 km north east of Gilgit) and Bagrot Nala (20 km north of Gilgit)                                                                                                                                                                                                                                                                                                                                                                       |
| 2.        | Bauxite                                           | from Chapursan (Hunza)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.        | Gold                                              | Presence in alluvial placer or sediments of<br>Indus and Gilgit rivers and its tributaries which<br>is being recovered by screen washing of<br>stream sediments                                                                                                                                                                                                                                                                                                         |
| 4.        | Copper                                            | Associated with gossans/red iron oxide/ochre<br>and base metals of Karakoram (Shyok)<br>Suture like Dainyor Nala (north west of Gilgit),<br>Barit, Bulashgah (also magnetite pod in<br>ophiolitic rocks), Majadar and Bor Nala, and<br>Bagrot Nala, Henzil (10 km north west of<br>Gilgit), Sher Qila (33 km NW of Gilgit), Singal<br>(45 km north west Gilgit), Nazbar valley (22<br>km W of Yasin), Shigari Bala area of Skardu<br>and Golo Das and surrounding areas |
| 5.        | Iron                                              | Originated from Indus Suture and its vicinity<br>areas like Chilas, east of Gilgit, western,<br>northern and eastern part of Haramosh massif<br>forming lobe and possibly from Karakoram<br>suture                                                                                                                                                                                                                                                                      |
| 6.        | Lithium/lepidolite                                | Originated from Shengus of Nanga Parbat<br>Massive (numerous pegmatites intruded in<br>gneissic rocks)                                                                                                                                                                                                                                                                                                                                                                  |
| 7.        | Sheet mica/muscovite                              | Originated from many pegmatites like Astore,<br>Bagarian and Hawa Gali, uranium from many<br>areas                                                                                                                                                                                                                                                                                                                                                                      |
| 8.        | Graphite                                          | Nagar Hunza, Chalt and Chelish                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9.        | Mesozoic coal                                     | Chapursan valley                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.       | limestone and marbles                             | Igneous and metamorphic rocks                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Mineral Resources of Gilgit-Baltistan, Pakistan

Source:(Malkani, 2020)

Considering the findings of test data and details given in Box-1, a detailed investigation of heavy metals across the GB specifically at mining sites would help to track contamination sources, impacts on surface water bodies and development of mitigation strategies.

# Dissolved Oxygen (DO)

Dissolved oxygen refers to the level of free, non-compound oxygen present in water. DO is an important parameter in assessing water quality because of its influence on the organisms living within a body of water. A dissolved oxygen level that is too high or too low specifically in surface water bodies can harm aquatic life and affect water quality. Dissolved oxygen was measured at six sampling points of rivers and storage ponds and was found within safe range. In Pakistan there are no standards for surface water bodies yet, thus compared with Nepalean, Indian and Bangladeshi standards for DO i.e. > 4 mg/L (Karn, 2001). Figure 23 shows that all sites were found within safe range (8.9-9.8 mg/L) for aquatic life.

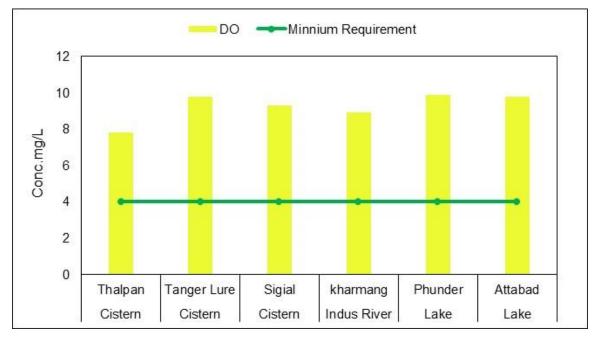
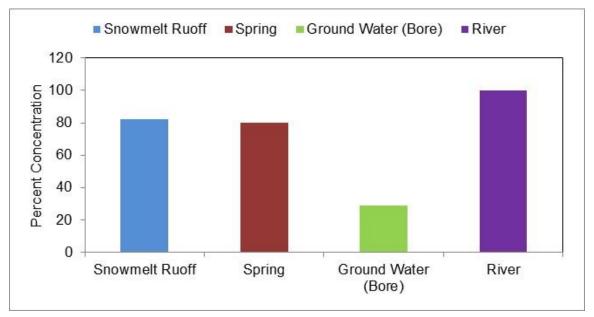



Figure 23: Dissolved oxygen concentration in rivers and lakes in Gilgit-Baltistan


# **Source Wise Summary of Results**

Source wise comparison of test data indicates that samples collected from rivers were 100% unsafe mainly due to microbial contamination which is expected in raw water (Table 4 and Figure 24). However, wastewater from surrounding settlements is also dumped into these rivers adding more microbial contamination. Domestic use of river water without treatment is common in GB. To reduce the possibility of waterborne diseases from utilization of raw river water; filtration and disinfection at consumer's end would be essential.

Table 4: Source wise water quality status of monitored water sources in Gilgit-Baltistan

| Source             | Point of<br>Use<br>type | No. | Unsafe<br>(No.) | %age<br>Unsafe | Cause of Contamination                                                                        |
|--------------------|-------------------------|-----|-----------------|----------------|-----------------------------------------------------------------------------------------------|
| Snowmelt Runoff    | Тар                     | 28  | 23              | 82             | Microbial contamination (79%),<br>Excessive Turbidity (25%),<br>Iron (14%)                    |
| Spring             | Тар                     | 56  | 45              | 80             | Microbial contamination (70%),<br>Excessive Turbidity (14%),<br>Iron (29%) and Fluoride (04%) |
| Groundwater (Bore) | Тар                     | 7   | 2               | 29             | Microbial contamination (71%),<br>Iron (29%)                                                  |
| River              | River                   | 3   | 3               | 100            | Microbial contamination (100%),<br>Excessive Turbidity (67%),<br>Iron (33%)                   |

Compared to surface water, groundwater was least contaminated. Only 2 of the 7 groundwater sources (29%) were found unsafe. Springs and surface water channels were 80 to 82% unsafe attributed mainly to turbidity and microbial contamination and lower iron and fluoride contamination.



# Figure 24: Source-wise percentage of unsafe samples

Overall, microbial contamination is the highest in all type of sources i.e. 68% (unfit due to total coliforms which are present in the environment).

# Conclusions

Watershed management is vital to ensure sustainable water supply for ecological and domestic purposes. Healthy watershed ensures acceptable water quality and poses less pressure on water treatment systems. This study reveals that turbidity, microbial contamination, and heavy metals (iron, fluoride and aluminium) in surface water sources of GB were found to be above the desirable limit of Pakistan's Drinking Water Quality Standards. This points out that river water quality deterioration is probably caused by domestic sewage, surface runoff from nearby hills, deforestation etc. It seems that lack of management, lack of public awareness, exploitation of natural resources particularly deforestation have drastic implications for watershed health. Moreover, overgrazing by cattle and livestock, and increased visits for recreation are also causing watershed degradation in the GB region. Moreover, ongoing glacier retreat may also be resulting in transient increase in suspended sediment fluxes and concentrations, and also changes in the water chemistry. Further release of sediment and related transport to surface water can be expected under warming climatic conditions. The study findings therefore, call for an improved understanding of impacts of mining on water bodies and human population, as well as spatial and temporal water quality assessment of glacier fed water bodies.

# **Recommendation and Way Forward**

#### **Disinfection of Unsafe Water**

Water purification and disinfection methods (chlorination) should be used either at source of supply network or at household level to prevent potential health risks.

#### Identification of Alternate Source

In districts with extensive mining activities such as Gilgit, Hunza and Skardu, local people should be educated to use alternate safe water sources. Alternatively, water treatment such as installation of ion exchange system for removal of heavy metals may be arranged.

#### **Proper Disposal of Wastewater**

The new water supply schemes should be well designed considering the reasonable distance between water supply and sewage pipelines. Moreover, wastewater disposal system and treatment in populated cities like Gilgit is also recommended to protect the water resources of GB. Lined wastewater channels with proper wastewater treatment either through natural wetlands or by secondary wastewater treatment plant would be fruitful.

#### Regular Monitoring, Capacity Building and Awareness Campaign

Capacity building of local agencies for water quality monitoring and treatment is also recommended. PCRWR in this context can help through its regional office in Gilgit and can impart training to locals. Moreover, awareness of local residents on safe storage of drinking water safe disposal of wastewater and trash handling can help in maintaining good water quality in surface water bodies in GB.

#### References

- Abbas, Y., Ali, N., Saleem, M., Haider, S.A., Gonzalez, Y., Abbas, S.N., Rasool, A (2015). Assessment of Water Shed and Drinking Water Quality at Surface Sources in Gilgit city, Pakistan.
- Ahmed, K., Ahmed, M., Ahmed, J., Khan, A., n.d (2012). Risk Assessment by Bacteriological Evaluation of Drinking Water of Gilgit-Baltistan 7.
- APHA, AWWA and WEF, D.E (2017). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association and Water Environment Federation, 23rd Edition, Washington, DC
- Ayub, S., Akhter, G., Iqbal, M., Ashraf, A (2020). Snow and Glacier Melt Runoff Simulation under Variable Altitudes and Climate Scenarios in Gilgit River Basin, Karakoram region. Model. Earth Syst. Environ. 6, 1–12. https://doi.org/10.1007/ s40808-020-00777-y
- Ashraf, M., (2020). Water Scarcity in Pakistan: Issues and Options. The Hilal Magzine, May 12, 2018.
- Ashraf and Bhatti, (2019). The Hindu Kush Himalayan Region as Mother Well of Indus Basin Irrigation System-Issues and Options. In: Farming Outlook. issn:1680-5984.
- Bakht, M. (2000). An Overview of Geothermal Resources of Pakistan [www Document]. URL /paper/An-Overview-of-Geothermal-Resources-of-Pakistan-Bakht/4f72f0 883d3ed4f47f2950d98c058201c05dccc9 (accessed 10.16.20).
- Civil Society Coalition for Climate Change (CSCC) (2018). Sub-National Water Dialogue Gilgit Baltistan, https://www.csccc.org.pk/attachments/news bulletin/GB% 20Water%20Dialogue.pdf, accessed at October 10th, 2020.
- Hussain, A., Ullah, K., Perwez, U., Shahid, M (2018). The Long-term Forecast of Gilgit-Baltistan(GB)'s Electricity Demand, in: 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Presented at the 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), IEEE, Islamabad, Pakistan, pp. 1–5. https://doi.org/10.1109/PGSRET.2018.8685966
- Hifza R. Fouzia A., Kiran A. and M. Ashraf (2021). Water Quality Status of Major Cities of Pakistan. Pakistan Council of Research in Water Resources (PCRWR), Islamabad, pp. 88.
- Karn, S.K., Harada, H (2001). Surface Water Pollution in Three Urban Territories of Nepal, India, and Bangladesh. Environ. Manage. 28, 483–496.

- Malkani, M.S. (2020). Mineral Resources of Gilgit-Baltistan and Azad Kashmir, Pakistan: An Update. Open J. Geol. 10, 661–702. https://doi.org /10.4236/ojg.2020. 106030
- Ministry of Environment (MOE) Government of Pakistan Statutory Notification S.R.O 1063(1), (2010). National Standards for Drinking water quality., The gazette of Pakistan, Part II pp 3207 http://environment.gov.pk/images/rules/ SRO2010 NEQSAirWaterNoise.pdf accessed on October 10th, 2020
- Nancy Cook, David Butz (2013). The Atta Abad Landslide and Everyday Mobility in Gojal, Northern Pakistan. Mt. Res. Dev. 33, 372–380. https://doi.org/ 10.1659/MRD-JOURNAL-D-13-00013.1
- Planning & Development Department, Government of the Gilgit-Baltistan and UNICEF Pakistan (2017). GB Multiple Indicator Cluster Survey, 2016-17, F report. Gilgit, Pakistan: P&D Department, Government of the Gilgit-Baltistan and UNICEF Pakistan.
- Pakistan Economic Survey 2019-20. Finance Division, Government of Pakistan. Accessed at: 11-Health-final 2-06-2020 (finance.gov.pk). Access date: May 27, 2021.
- Qureshi R. H., M. Ashraf (2019). Water Security Issues of Agriculture in Pakistan. Pakistan Academy of Sciences Islamabad Pak, 1, 41.
- Reig, P., Maddocks, A. & Gassert, F (2013). World's 36 most water-stressed countries. World Resources Institute. http://www. wri. org/blog/2013/12/world% E2, 80.
- Shedayi, A.A., Jan, N., Riaz, S., Xu, M (2015). Drinking Water Quality Status in Gilgit, Pakistan and WHO Standards 8.
- The World Asia (2018). https://gulfnews.com/world/asia/pakistan/21-million-in-pakistandont-have-access-to-clean-water-report-1.2192988#:~:text=Pakistan%20ranks%20number%209%20in,have%20acce ss%20to%20clean%20water.
- Wolf, S.O. (2017). China-Pakistan Economic Corridor and Its Impact on Regionalisation in South Asia, in: Bandyopadhyay, S., Torre, A., Casaca, P., Dentinho, T. (Eds.), Regional Cooperation in South Asia: Socio-Economic, Spatial, Ecological and Institutional Aspects, Contemporary South Asian Studies. Springer International Publishing, Cham, pp. 99–112. https://doi.org/10.1007/ 978-3-319-56747-1\_6

## Annexure-I

|       |                |                  | Lo                | cation      |                                         |                      | Sou                | rce          |           |
|-------|----------------|------------------|-------------------|-------------|-----------------------------------------|----------------------|--------------------|--------------|-----------|
| Sr. # | Sample<br>Code | Latitude<br>(°N) | Longitude<br>(°E) | Tehsil      | Sampling<br>Point<br>(village)          | Population<br>Served | Туре               | Outlet       | Suppliers |
| 1.    | DIA-01         | 35.40875         | 74.1027           | Chillas     | Chilas city                             | 10,000               | Snowmelt<br>Runoff | WSS<br>Tank  | WSSA      |
| 2.    | DIA-02         | 35.413583        | 74.104167         | Chillas     | Chilas city<br>complaint<br>office WASA | 10,000               | Snowmelt<br>Runoff | Тар          | WSSA      |
| 3.    | DIA-03         | 35.533317        | 74.504383         | Gonar Farms | Goharabad                               | 2,300                | Spring             | Тар          | Community |
| 4.    | DIA-04         | 35.4085          | 74.389267         | Gonar Farms | Gonar farms                             | 3,000                | Spring             | Тар          | Community |
| 5.    | DIA-05         | 35.403767        | 74.2092           | Chillas     | Gini                                    | 3,000                | Snowmelt<br>Runoff | Тар          | Community |
| 6.    | DIA-06         | 35.417233        | 74.147783         | Chillas     | Thalpan                                 | 1,500                | Snowmelt<br>Runoff | Cistern      | Community |
| 7.    | DIA-07         | 35.588383        | 74.567533         | Dairal      | Gayal                                   | 9,000                | Spring             | Тар          | AKRSP     |
| 8.    | DIA-08         | 35.600017        | 73.490617         | Tangir      | Lure                                    | 2,000                | Snowmelt<br>runoff | Cistern      | AKRSP     |
| 9.    | DIA-09         | 35.575333        | 74.630083         | Gonar Farms | Thalichi                                | 25,000               | Spring             | Тар          | Community |
| 10.   | AST-01         | 35.470983        | 74.7786           | Astore      | Dashkin                                 | 5,000                | Spring             | Тар          | AKRSP     |
| 11.   | AST-02         | 35.44585         | 74.80625          | Astore      | Harcho                                  | 2,000                | Spring             | Тар          | WSSA      |
| 12.   | AST-03         | 35.365617        | 74.868317         | Astore      | Higher<br>sechondary<br>school Lous     | 4,500                | Spring             | Тар          | WSSA      |
| 13.   | AST-04         | 35.335067        | 74.855417         | Astore      | Fina                                    | 3,000                | Spring             | Тар          | WSSA      |
| 14.   | AST-05         | 35.359983        | 74.836533         | Astore      | Chongara                                | 5,000                | Spring             | Тар          | WSSA      |
| 15.   | AST-06         | 35.355017        | 74.862633         | Astore      | Astore City                             | 8,000                | Spring             | Тар          | WSSA      |
| 16.   | AST-07         | 35.285717        | 74.8491           | Astore      | Gorikot                                 | 5,000                | Spring             | Тар          | WSSA      |
| 17.   | AST-08         | 35.2244          | 74.849483         | Astore      | Sigial                                  | 300                  | Snowmelt<br>runoff | Cistern      | Community |
| 18.   | AST-09         | 35.251383        | 74.900017         | Shuntor     | Pakora                                  | 5,000                | Spring             | Тар          | WSSA      |
| 19.   | AST-10         | 35.036033        | 75.103817         | Shuntor     | Chillum                                 | 1,000                | Spring             | Тар          | WSSA      |
| 20.   | AST-11         | 35.6452          | 74.633733         | Nunji       | AC<br>dispensary<br>Bunji               | 15,000               | Snowmelt<br>runoff | Тар          | WSSA      |
| 21.   | SKA-01         | 35.265283        | 75.516533         | Skardu      | Skardu main<br>WSS                      | 40,000               | Snowmelt<br>runoff | Main<br>Line | WSSA      |
| 22.   | SKA-02         | 35.2916          | 75.614283         | Skardu      | Skardu<br>(Quaidabad)                   | 500                  | GW                 | Тар          | Community |
| 23.   | SKA-03         | 35.291983        | 75.614817         | Skardu      | Skardu<br>(Quaidabad)                   | 200                  | Snowmelt<br>runoff | Тар          | WSSA      |
| 24.   | SKA-04         | 35.289567        | 75.6345           | Skardu      | Alamdar<br>chowk<br>Skardu city         | 2,000                | Snowmelt<br>runoff | Тар          | WSSA      |

## Detail of Sampling Locations, Water Sources and Population Served

|       | _              |                  | Lo                | cation   |                                |                      | Sou                | rce    |           |
|-------|----------------|------------------|-------------------|----------|--------------------------------|----------------------|--------------------|--------|-----------|
| Sr. # | Sample<br>Code | Latitude<br>(°N) | Longitude<br>(°E) | Tehsil   | Sampling<br>Point<br>(village) | Population<br>Served | Туре               | Outlet | Suppliers |
| 25.   | SKA-05         | 35.312083        | 75.6037           | Skardu   | Sundas                         | 600                  | GW                 | Тар    | Community |
| 26.   | SKA-06         | 35.315883        | 75.608667         | Skardu   | Ghazi colony<br>Sundas         | 20                   | GW                 | Тар    | Community |
| 27.   | SKA-07         | 35.418317        | 75.465            | Skardu   | Kachura                        | 3,000                | Spring             | Тар    | AKRSP     |
| 28.   | SKA-08         | 35.02965         | 76.0937           | Kharmang | Tolti                          | 1,200                | Spring             | Тар    | WSSA      |
| 29.   | SKA-09         | 35.134317        | 75.961517         | Kharmang | Mehdiabad                      | 10,000               | Spring             | Тар    | WSSA      |
| 30.   | SKA-10         | 35.2562          | 75.862683         | Skardu   | Gol                            | 1,000                | Spring             | Тар    | Spring    |
| 31.   | SKA-11         | 35.423583        | 75.738883         | Shigar   | UC Markung<br>shigar           | 5,000                | Spring             | Тар    | WSSA      |
| 32.   | SKA-12         | 35.29695         | 75.6949           | Skardu   | Hussain<br>Abad                | 8,000                | Spring             | Тар    | WSSA      |
| 33.   | SKA-13         | 35.588317        | 75.223983         | Rundu    | Dambodas<br>main bazar         | 5,000                | Snowmelt<br>runoff | Тар    | WSSA      |
| 34.   | SKA-14         | 35.72045         | 74.825717         | Rundu    | Shanggus                       | 1,500                | Spring             | Тар    | WSSA      |
| 35.   | SKA-15         | 35.223283        | 75.910783         | Skardu   | Indus River<br>kharmang        | N/A                  | River              | River  | River     |
| 36.   | GZR-01         | 36.16415         | 72.9182           | Gopsi    | Phunder                        | N/A                  | River (P<br>lak    |        | River     |
| 37.   | GZR-02         | 36.1661          | 72.929433         | Gopsi    | Phunder<br>vilage              | N/A                  | Spring             | Тар    | AKRSP     |
| 38.   | GZR-03         | 36.24675         | 73.37165          | Gopsi    | Khalti                         | N/A                  | Spring             | Тар    | AKRSP     |
| 39.   | GZR-04         | 36.370917        | 73.33285          | Yasin    | Yasin Khas                     | N/A                  | Snowmelt<br>runoff | Тар    | WSSA      |
| 40.   | GZR-05         | 36.209667        | 73.33285          | Gopsi    | Hakis                          | N/A                  | Spring             | Тар    | AKRSP     |
| 41.   | GZR-06         | 36.230233        | 73.446717         | Gopsi    | Gopis Khas                     | N/A                  | Snowmelt<br>runoff | Тар    | WSSA      |
| 42.   | GZR-07         | 36.24705         | 73.566717         | Gopsi    | Sumall                         | N/A                  | Spring             | Тар    | AKRSP     |
| 43.   | GZR-08         | 36.242983        | 73.740633         | Gopsi    | Hatun<br>Dasmasqu              | N/A                  | Snowmelt<br>runoff | Тар    | AKRSP     |
| 44.   | GZR-09         | 36.34675         | 73.507833         | Ishkoman | Choatorkhan<br>Ishkomin        | N/A                  | Snowmelt<br>runoff | Тар    | WSSA      |
| 45.   | GZR-10         | 36.2002          | 73.750967         | Gakhuch  | Golodas                        | N/A                  | Spring             | Тар    | AKRSP     |
| 46.   | GZR-11         | 36.185283        | 73.774733         | Gakhuch  | Silpi                          | N/A                  | Spring             | Тар    | WSSA      |
| 47.   | GZR-12         | 36.189267        | 73.761317         | Gakhuch  | Main Bazar<br>Gahkuch City     | N/A                  | GW (well)          | Тар    | Community |
| 48.   | GZR-13         | 36.179533        | 73.76905          | Gakhuch  | Main bazar<br>Gahkoch City     | N/A                  | Spring             | Тар    | WSSA      |

|       |                |                  | Lo                | cation       |                                   |                      | Sou                | rce    |           |
|-------|----------------|------------------|-------------------|--------------|-----------------------------------|----------------------|--------------------|--------|-----------|
| Sr. # | Sample<br>Code | Latitude<br>(°N) | Longitude<br>(°E) | Tehsil       | Sampling<br>Point<br>(village)    | Population<br>Served | Туре               | Outlet | Suppliers |
| 49.   | GZR-14         | 36.147317        | 73.859017         | Sigal        | Boobur                            | N/A                  | Snowmelt<br>runoff | Тар    | WSSA      |
| 50.   | GZR-15         | 36.137633        | 73.63245          | Sigal        | Gulmati                           | N/A                  | Spring             | Тар    | AKRSP     |
| 51.   | GZR-16         | 36.101           | 73.90005          | Sigal        | Singul                            | N/A                  | Spring             | Тар    | AKRSP     |
| 52.   | GZR-17         | 36.0993          | 73.9765           | Punail       | Main bazar<br>Goharabad           | N/A                  | Spring             | Тар    | WSSA      |
| 53.   | GZR-18         | 36.09095         | 74.035717         | Punail       | Sher Qila                         | N/A                  | Spring             | Тар    | WSSA      |
| 54.   | GZR-19         | 36.06355         | 74.085267         | Punail       | Gulapur                           | N/A                  | Snowmelt<br>runoff | Тар    | WSSA      |
| 55.   | HUN-01         | 36.686867        | 74.82875          | Gojal        | Hussain<br>Abad                   | 300                  | Snowmelt<br>runoff | Тар    | AKRSP     |
| 56.   | HUN-02         | 36.612167        | 74.850033         | Gojal        | Markhan                           | 1,000                | Spring             | Тар    | AKRSP     |
| 57.   | HUN-03         | 36.580983        | 74.805167         | Gojal        | Khyber                            | 300                  | Spring             | Тар    | AKRSP     |
| 58.   | HUN-04         | 36.382983        | 74.866467         | Gojal        | Hascol pump<br>KKH road<br>Gulmit | 6,000                | Spring             | Тар    | WSSA      |
| 59.   | HUN-05         | 36.354583        | 74.865517         | Gojal        | Shishkhat                         | 2,500                | Spring             | Тар    | AKRSP     |
| 60.   | HUN-06         | 36.327933        | 74.873633         | Gojal        | Attabad                           | N/A                  | Lake               | Lake   | Community |
| 61.   | HUN-07         | 36.273267        | 74.731983         | Nagag Khas   | Nagar<br>Shabirabad               | 20,000               | Snowmelt<br>runoff | Тар    | WSSA      |
| 62.   | HUN-08         | 36.318183        | 74.59425          | Aliabad      | Shakon Shae                       | 15,000               | Snowmelt<br>runoff | Тар    | WSSA      |
| 63.   | HUN-09         | 36.307083        | 74.619183         | Aliabad      | Ali Abad City                     | 18,000               | Snowmelt<br>runoff | Тар    | WSSA      |
| 64.   | HUN-10         | 36.30385         | 74.6637           | Nagag Khas   | Nagar<br>Sumayer                  | 14,000               | Spring             | Тар    | WSSA      |
| 65.   | HUN-11         | 36.299383        | 74.63265          | Nagag Khas   | Asqurdas                          | 10,000               | Spring             | Тар    | WSSA      |
| 66.   | HUN-12         | 36.2801          | 74.610133         | Nagag Khas   | Murtaza abad                      | 4,000                | Spring             | TAP    | AKRSP     |
| 67.   | HUN-13         | 36.264667        | 74.53645          | Aliabad      | Nasirabad                         | 8,000                | Snowmelt<br>runoff | Тар    | AKRSP     |
| 68.   | HUN-14         | 36.252317        | 74.53955          | Sikandarabad | Munapin                           | 5,000                | Spring             | Тар    | Community |
| 69.   | HUN-15         | 36.2507          | 74.518583         | Sikandarabad | Pisan                             | 4,000                | Spring             | Тар    | AKRSP     |
| 70.   | HUN-16         | 36.23975         | 74.48805          | Sikandarabad | Nagar<br>Gulmat                   | 6,000                | Spring             | Тар    | AKRSP     |
| 71.   | HUN-17         | 36.23985         | 74.607183         | Sikandarabad | Thol                              | 4,000                | Spring             | Тар    | WSSA      |
| 72.   | HUN-18         | 36.23065         | 74.411            | Sikandarabad | Nilt                              | 4,000                | Spring             | Тар    | WSSA      |
| 73.   | HUN-19         | 36.24485         | 74.369117         | Sikandarabad | Sikandar<br>Abad                  | 3,000                | Spring             | Тар    | WSSA      |
| 74.   | HUN-20         | 36.250717        | 74.3214           | Sikandarabad | Chalat                            | 5,000                | Spring             | Тар    | AKRSP     |
| 75.   | GIL-01         | 35.8339          | 74.74385          | Danyor       | Sasee<br>Haramish                 | 1,000                | Snowmelt<br>runoff | Тар    | WSSA      |

|       |                |                  | Lo                | cation |                                          |                      | Sou                | rce    |           |
|-------|----------------|------------------|-------------------|--------|------------------------------------------|----------------------|--------------------|--------|-----------|
| Sr. # | Sample<br>Code | Latitude<br>(°N) | Longitude<br>(°E) | Tehsil | Sampling<br>Point<br>(village)           | Population<br>Served | Туре               | Outlet | Suppliers |
| 76.   | GIL-02         | 35.701783        | 74.63195          | Jaglot | Sonehri<br>bazar Jaglot                  | 30,000               | Snowmelt<br>runoff | Тар    | WSSA      |
| 77.   | GIL-03         | 35.817917        | 74.588783         | Gilgit | Pari Bangla                              | 8,000                | Snowmelt<br>runoff | Тар    | WSSA      |
| 78.   | GIL-04         | 36.048767        | 74.106            | Gilgit | Shakyot                                  | 4,000                | Spring             | Тар    | WSSA      |
| 79.   | GIL-05         | 36.051167        | 74.13435          | Gilgit | Bargo                                    | 4,000                | Snowmelt<br>runoff | Тар    | WSSA      |
| 80.   | GIL-06         | 35.92555         | 74.26055          | Gilgit | Gilgit city<br>mohalla<br>Rafiqabad      | 20,000               | Spring             | Тар    | WSSA      |
| 81.   | GIL-07         | 35.926633        | 74.293133         | Gilgit | Amphari                                  | 500                  | G/W                |        |           |
| 82.   | GIL-08         | 35.923217        | 74.3055           | Gilgit | Giligit city<br>near Polo<br>Ground      | 50,000               | Spring             | Тар    | WSSA      |
| 83.   | GIL-09         | 35.913617        | 74.314333         | Gilgit | Nagral                                   | 500                  | G/W                | Тар    | Community |
| 84.   | GIL-10         | 35.910017        | 74.33615          | Gilgit | Giligit city<br>Jutial public<br>college | 10,000               | Snowmelt<br>runoff | Тар    | WSSA      |
| 85.   | GIL-11         | 36.1804          | 74.2901           | Danyor | Jagrot Gah                               | 5,000                | Spring             | Тар    | Community |
| 86.   | GIL-12         | 36.10465         | 74.301733         | Danyor | Rahimabad                                | 3,000                | Spring             | Тар    | WSSA      |
| 87.   | GIL-13         | 35.961117        | 74.513917         | Danyor | Sinakir                                  | 1,000                | Spring             | Тар    | AKRSP     |
| 88.   | GIL-14         | 36.586917        | 74.48815          | Danyor | Jalalabad                                | 10,000               | Spring             | Тар    | WSSA      |
| 89.   | GIL-15         | 35.8897          | 74.47375          | Danyor | Oshkanadas                               | 10,000               | Spring             | Тар    | WSSA      |
| 90.   | GIL-16         | 35.932667        | 74.414983         | Danyor | Muhammad<br>abad                         | 6,000                | Snowmelt<br>runoff | Тар    | AKRSP     |
| 91.   | GIL-17         | 36.0754          | 74.2861           | Gilgit | Nomal                                    | 20,000               | Spring             | Тар    | WSSA      |
| 92.   | GIL-18         | 36.041733        | 74.29905          | Danyor | Jutal                                    | 5,000                | Spring             | Тар    | WSSA      |
| 93.   | GIL-19         | 36.922283        | 74.378933         | Gilgit | Danyor                                   | 25,000               | Spring             | Тар    | WSSA      |
| 94.   | GIL-20         | 35.947733        | 74.3201           | Gilgit | Chilmish Das                             | 100                  | G/W                | Тар    | Community |

### Annexure-II

|                                                                                                     |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uality Survey                     |                 |                          |                   |
|-----------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|--------------------------|-------------------|
| Date:                                                                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Form No                           |                 |                          |                   |
| District Sampled :                                                                                  |                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tehsil:                           |                 |                          |                   |
| Village:                                                                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Population of V                   | /illage         |                          | N                 |
|                                                                                                     | Part-A:          | to be filled in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n by the Field                    | Team            |                          |                   |
| 1. Location                                                                                         | •                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Sampled                        | Source:         |                          |                   |
| 3. Air Temp:                                                                                        |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. Water Te                       | emp:            |                          |                   |
| 5. Humidity:                                                                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Site ID:                       |                 |                          |                   |
| 7. Sample ID:                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. Sample                         | Time:           | Dentila                  |                   |
| 9. Water Source:                                                                                    |                  | lic WSS<br>urce) o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Public WSS (C<br>end)             | onsumer's       | Domestic s<br>(Household |                   |
| 34                                                                                                  | Don              | mestic source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other 🗆                           |                 |                          |                   |
| 10. Description of Water Sou                                                                        |                  | and a second sec | (i) Surface Wat                   | er              |                          |                   |
|                                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ii) Ground Wa                    | ter             |                          |                   |
| 11. Nature of Source:<br>Hand Pump Tubewell                                                         | Well             | W.Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cistern                           | Тар             | Pond                     | Ind. Effluent     |
| Spring Nullah                                                                                       | Dam              | Irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | River                             | Lake            | Sewage                   | Other             |
| 12. Other Water Tab                                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Screen Depth (f                   | t)              |                          |                   |
| Information: Depth of S                                                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Year Installed<br>Owner/ Caretak  | er              |                          |                   |
| Allied Sour                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Discharge                         |                 |                          |                   |
|                                                                                                     |                  | Jucie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                 |                          |                   |
| 13. General Observation and                                                                         | Field Ana<br>Sat | Unsat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Taste                             | Sat             | Unsat                    |                   |
| Odour? (rotten eggs)                                                                                |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pH [                              |                 |                          |                   |
| Colour<br>Conductivity (µS/cm)                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DO                                |                 | mg/l                     |                   |
|                                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                 |                          |                   |
| 14. Samples collected for qu                                                                        | ality conti      | rol:<br>-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AB                                | CD              | 1                        |                   |
| Cross analysis ID<br>Field Blank ID                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A B                               | C D             |                          |                   |
| Replicates ID                                                                                       |                  | -G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A B                               | C D             |                          |                   |
| •                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Altitude                          | -               |                          |                   |
| 15. GPS Reading:                                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latitude                          |                 |                          |                   |
|                                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Longitude                         |                 |                          |                   |
|                                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                 |                 |                          |                   |
| 16. Picture taken:                                                                                  | Yes              | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                 |                          |                   |
| 17. No. of consumers using V<br>Source:                                                             | Nater of S       | ampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                 |                          |                   |
| 18. Hygienic conditions near                                                                        | source:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                 |                          |                   |
| <ol> <li>Complaints of people at<br/>water quality e.g. Diarrh</li> </ol>                           | the location     | on regarding<br>itis A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '                                 |                 |                          |                   |
| Typhoid etc.<br>20. Source protected                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                               |                 |                          | No                |
| 21. Comments: (if any)                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                 |                          |                   |
| Collected by:                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Supervised                        | l by:           |                          |                   |
| · · · · · · · · · · · · · · · · · · ·                                                               | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                 | tos - Nitrate I | Nitrogen (1 ml           | 100 ml, 1 M Boric |
| Type A - All sites - Microbiological analys<br>Type B - All sites - Trace elements<br>preservative) | (2-10 ml/litre   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type C - All s<br>as preservative |                 | initiografi ( z. 116)    |                   |
| Type D - All sites - Other water preservative)                                                      | quality parar    | meters (no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                          |                   |

•

# Annexure-III

#### **Microbiological and Physico Chemical Test Results**

|     | Sample | E.C   | рН      | Turbidity | HCO <sub>3</sub> /<br>Alk | Ca   | Mg   | Hard | СІ   | Na   | к    | SO <sub>4</sub> | NO3<br>(N) | PO <sub>4</sub> | TDS    | Fe   | F    | Total<br>Coliforms | E. coli  | Remarks         |
|-----|--------|-------|---------|-----------|---------------------------|------|------|------|------|------|------|-----------------|------------|-----------------|--------|------|------|--------------------|----------|-----------------|
| Sr# | Code   | µS/cm | -       | NTU       | mg/L                      | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L            | mg/L       | mg/L            | mg/L   | mg/L | mg/L | (CFU/ml)           | (CFU/ml) |                 |
|     |        | NGVS  | 6.5-8.5 | 5.00      | NGVS                      | NGVS | NGVS | 500  | 250  | NGVS | NGVS | NGVS            | 10.00      | NGVS            | 1000   | 0.30 | 1.50 | 0                  | -ve      | Safe/<br>Unsafe |
| 1   | DIA-01 | 129   | 7.4     | 6.05      | 55                        | 12   | 7    | 60   | BDL  | 3    | 1.0  | 6               |            | 0.39            | 71.00  | 0.06 | 0.05 | 11                 | -ve      | Unsafe          |
| 2   | DIA-02 | 129   | 7.5     | 1.52      | 55                        | 12   | 7    | 60   | 7    | 3    | 0.9  | 4               | 1.17       | 0.47            | 71.00  | 0.06 | 0.08 | 17                 | -ve      | Unsafe          |
| 3   | DIA-03 | 219   | 7.2     | 1.52      | 60                        | 20   | 12   | 100  | BDL  | 3    | 2.9  | 39              | 1.12       | 0.41            | 121.00 | 0.00 | 0.15 | 4                  | -ve      | Unsafe          |
| 4   | DIA-04 | 570   | 7.8     | BDL       | 150                       | 56   | 17   | 230  | 10   | 35   | 8.3  | 122             | 0.38       | 0.37            | 314.00 | 0.08 | 2.80 | 8                  | -ve      | Unsafe          |
| 5   | DIA-05 | 174   | 7.9     | BDL       | 60                        | 16   | 7    | 70   | 10   | 6    | 1.8  | 14              | 1.06       | 0.42            | 96.00  | 0.00 | 0.08 | -ve                | -ve      | Safe            |
| 6   | DIA-06 | 110   | 6.9     | 12.68     | 40                        | 12   | 2    | 40   | 5    | 4    | 2.6  | 6               | 1.02       | 0.47            | 51.00  | 0.00 | 0.09 | 27                 | -ve      | Unsafe          |
| 7   | DIA-07 | 106   | 7.3     | BDL       | 40                        | 16   | 4    | 40   | BDL  | 2    | 1.7  | 9               | 0.67       | 0.34            | 58.00  | 0.00 | 0.10 | -ve                | -ve      | Safe            |
| 8   | DIA-08 | 69    | 7.3     | 3.45      | 30                        | 8    | 36   | 40   | BDL  | BDL  | 1.1  | 7               | 0.37       | 0.34            | 38.00  | 0.00 | 0.07 | -ve                | -ve      | Safe            |
| 9   | DIA-09 | 461   | 7.9     | BDL       | 130                       | 32   | 4    | 230  | BDL  | 6    | 8.0  | 71              | 0.24       | 0.47            | 254.00 | 0.00 | 0.22 | 4                  | -ve      | Unsafe          |
| 10  | AST-01 | 79    | 7.4     | 0.41      | 20                        | 8    | 5    | 40   | BDL  | BDL  | 2.0  | 18              | 0.32       | 0.27            | 44.00  | 0.67 | 1.10 | 20                 | -ve      | Unsafe          |
| 11  | AST-02 | 311   | 7.4     | 0.26      | 120                       | 48   | 7    | 150  | BDL  | 4    | 3.1  | 25              | 0.96       | 0.45            | 171.00 | 0.00 | 0.62 | 31                 | -ve      | Unsafe          |
| 12  | AST-03 | 164   | 7.8     | 0.27      | 70                        | 24   | BDL  | 60   | BDL  | 4    | 2.0  | 22              | 0.44       | 0.15            | 90.00  | 0.44 | 0.08 | 9                  | -ve      | Unsafe          |
| 13  | AST-04 | 82    | 7.6     | 0.23      | 30                        | 12   | 2    | 30   | BDL  | 2    | 1.0  | 23              | 0.25       | 0.02            | 45.00  | 0.45 | 0.03 | 2                  | -ve      | Unsafe          |
| 14  | AST-05 | 199   | 7.4     | 0.19      | 70                        | 20   | 10   | 90   | BDL  | 2    | 3.3  | 0               | 0.36       | 0.19            | 109.00 | 1.34 | 0.91 | -ve                | -ve      | UnSafe          |
| 15  | AST-06 | 176   | 7.6     | 1.26      | 50                        | 24   | 5    | 70   | BDL  | BDL  | 2.6  | 25              | 0.09       | 0.21            | 97.00  | 0.51 | 0.25 | 6                  | -ve      | Unsafe          |
| 16  | AST-07 | 179   | 7.5     | BDL       | 50                        | 28   | 2    | 80   | BDL  | 3    | 2.5  | 26              | 0.25       | 0.25            | 99.00  | 0.00 | 0.13 | 14                 | -ve      | Unsafe          |
| 17  | AST-08 | 44    | 7.2     | 3.94      | 15                        | 4    | BDL  | 10   | BDL  | BDL  | 0.6  | 8               | 0.26       | 0.50            | 24.00  | 0.11 | 0.00 | 21                 | -ve      | Unsafe          |
| 18  | AST-09 | 51    | 7.4     | 3.70      | 10                        | 4    | BDL  | 10   | BDL  | BDL  | 10.0 | 16              | 0.26       | 0.38            | 28.00  | 0.00 | 0.00 | 18                 | -ve      | Unsafe          |
| 19  | AST-10 | 59    | 7.6     | 5.38      | 30                        | 4    | 5    | 30   | BDL  | 2    | 0.2  | 0               | 0.13       | 0.45            | 32.00  | 0.33 | 0.08 | -ve                | -ve      | UnSafe          |
| 20  | AST-11 | 629   | 7.3     | 1.89      | 30                        | 48   | 44   | 300  | BDL  | 10   | 4.5  | 27              | 0.00       | 0.35            | 346.00 | 0.20 | 1.10 | 17                 | -ve      | Unsafe          |
| 21  | SKA-01 | 143   | 7.9     | BDL       | 55                        | 20   | 4    | 65   | BDL  | 2    | 1.3  | 28              | 0.17       | 0.28            | 79.00  | 0.00 | 0.16 | -ve                | -ve      | Safe            |
| 22  | SKA-02 | 297   | 7.1     | BDL       | 120                       | 40   | 10   | 140  | BDL  | 4    | 2.4  | 27              | 2.25       | 0.00            | 163.00 | 0.09 | 0.07 | -ve                | -ve      | Safe            |
| 23  | SKA-03 | 147   | 7.9     | BDL       | 80                        | 20   | 5    | 60   | BDL  | 2    | 1.2  | 0               | 0.19       | 0.00            | 81.00  | 0.13 | 0.08 | 4                  | -ve      | Unsafe          |
| 24  | SKA-04 | 140   | 7.9     | 0.40      | 60                        | 8    | 5    | 60   | BDL  | 2    | 1.1  | 0               | 0.16       | 0.00            | 77.00  | 0.06 | 0.10 | -ve                | -ve      | Safe            |
|     |        |       |         |           |                           |      |      |      |      |      |      |                 |            |                 |        |      |      |                    |          |                 |

|     | Sample | E.C   | рН      | Turbidity | HCO <sub>3</sub> /<br>Alk | Ca   | Mg   | Hard | СІ   | Na   | к    | SO <sub>4</sub> | NO₃<br>(N) | PO <sub>4</sub> | TDS    | Fe   | F    | Total<br>Coliforms | E. coli  | Remarks         |
|-----|--------|-------|---------|-----------|---------------------------|------|------|------|------|------|------|-----------------|------------|-----------------|--------|------|------|--------------------|----------|-----------------|
| Sr# | Code   | µS/cm | -       | NTU       | mg/L                      | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L            | mg/L       | mg/L            | mg/L   | mg/L | mg/L | (CFU/ml)           | (CFU/ml) |                 |
|     |        | NGVS  | 6.5-8.5 | 5.00      | NGVS                      | NGVS | NGVS | 500  | 250  | NGVS | NGVS | NGVS            | 10.00      | NGVS            | 1000   | 0.30 | 1.50 | 0                  | -ve      | Safe/<br>Unsafe |
| 25  | SKA-05 | 712   | 7.2     | BDL       | 270                       | 112  | 15   | 340  | 28   | 17   | 7.1  | 46              | 8.00       | 0.00            | 392.00 | 0.45 | 0.23 | -ve                | -ve      | UnSafe          |
| 26  | SKA-06 | 300   | 7.7     | BDL       | 130                       | 32   | 15   | 140  | 8    | 5    | 3.4  | 18              | 0.19       | 0.10            | 165.00 | 0.66 | 0.20 | -ve                | -ve      | UnSafe          |
| 27  | SKA-07 | 179   | 7.2     | 0.81      | 80                        | 36   | BDL  | 90   | BDL  | BDL  | 3.0  | 6               | 0.23       | 0.05            | 99.00  | 0.59 | 0.12 | 42                 | -ve      | Unsafe          |
| 28  | SKA-08 | 102   | 7.4     | 0.04      | 30                        | 16   | 2    | 50   | BDL  | BDL  | 1.5  | 22              | 0.20       | 0.41            | 56.00  | 0.57 | 0.11 | 31                 | -ve      | Unsafe          |
| 29  | SKA-09 | 105   | 7.7     | 1.55      | 40                        | 20   | BDL  | 50   | BDL  | 2    | 0.9  | 13              | 0.28       | 0.00            | 58.00  | 0.42 | 0.13 | 9                  | -ve      | Unsafe          |
| 30  | SKA-10 | 186   | 7.1     | 0.18      | 70                        | 28   | 2    | 80   | 10   | 5    | 3.2  | 0               | 0.55       | 0.00            | 102.00 | 0.00 | 0.12 | 6                  | -ve      | Unsafe          |
| 31  | SKA-11 | 229   | 7.9     | 15.43     | 80                        | 24   | 12   | 110  | 8    | BDL  | 2.6  | 20              | 0.65       | 0.00            | 126.00 | 0.58 | 0.16 | 11                 | -ve      | Unsafe          |
| 32  | SKA-12 | 130   | 7.9     | 0.78      | 50                        | 16   | 7    | 70   | BDL  | BDL  | 2.0  | 19              | 0.45       | 0.00            | 72.00  | 0.00 | 0.15 | 4                  | -ve      | Unsafe          |
| 33  | SKA-13 | 284   | 7.8     | 1.98      | 120                       | 36   | 12   | 140  | BDL  | 3    | 5.7  | 29              | 0.19       | 0.32            | 156.00 | 0.41 | 0.19 | 19                 | -ve      | Unsafe          |
| 34  | SKA-14 | 1093  | 7.0     | BDL       | 350                       | 160  | 17   | 470  | 19   | 33   | 20.0 | 140             | 0.00       | 0.33            | 601.00 | 0.56 | 2.70 | 11                 | -ve      | Unsafe          |
| 35  | SKA-15 | 179   | 7.9     | 85.00     | 70                        | 24   | 5    | 80   | BDL  | 3    | 1.4  | 17              | 0.76       | 0.05            | 99.00  | 0.48 | 0.00 | 41                 | -ve      | Unsafe          |
| 36  | GZR-01 | 141   | 8.1     | 1.70      | 50                        | 20   | 5    | 70   | BDL  | 0    | 0.8  | 15              | 0.30       | 0.59            | 77.55  | 0.00 | 0.40 | 12                 | -ve      | Unsafe          |
| 37  | GZR-02 | 203   | 7.9     | 2.80      | 90                        | 24   | 7    | 90   | BDL  | 5    | 1.3  | 12              | 0.50       | 0.55            | 111.65 | 0.00 | 0.10 | 11                 | -ve      | Unsafe          |
| 38  | GZR-03 | 83    | 7.3     | BDL       | 25                        | 12   | 2    | 40   | 7    | 0    | 1.5  | 8               | 0.60       | 0.44            | 45.65  | 0.00 | 0.10 | 2                  | -ve      | Unsafe          |
| 39  | GZR-04 | 136   | 7.2     | BDL       | 40                        | 12   | 10   | 70   | BDL  | 0    | 1.0  | 28              | 0.50       | 0.42            | 74.80  | 0.00 | 0.20 | 2                  | -ve      | Unsafe          |
| 40  | GZR-05 | 75    | 7.4     | BDL       | 30                        | 8    | 5    | 40   | 4    | 0    | 1.5  | 7               | 0.30       | 0.60            | 41.25  | 0.00 | 0.10 | 6                  | -ve      | Unsafe          |
| 41  | GZR-06 | 66    | 6.5     | 4.15      | 25                        | 8    | 2    | 30   | BDL  | 0    | 1.3  | 10              | 0.40       | 0.50            | 36.30  | 0.00 | 0.06 | 7                  | -ve      | Unsafe          |
| 42  | GZR-07 | 118   | 7.4     | 4.50      | 40                        | 12   | 7    | 60   | 4    | 0    | 0.9  | 12              | 0.50       | 0.52            | 64.90  | 0.00 | 0.40 | -ve                | -ve      | Safe            |
| 43  | GZR-08 | 242   | 7.2     | 16.00     | 90                        | 28   | 7    | 100  | BDL  | 5    | 5.3  | 30              | 0.40       | 0.38            | 133.10 | 0.00 | 0.10 | -ve                | -ve      | UnSafe          |
| 44  | GZR-09 | 220   | 7.8     | 7.10      | 70                        | 28   | 7    | 100  | BDL  | 0    | 1.0  | 33              | 0.20       | 0.54            | 121.00 | 0.00 | 0.20 | 9                  | -ve      | Unsafe          |
| 45  | GZR-10 | 528   | 7.9     | BDL       | 120                       | 52   | 17   | 200  | 10   | 24   | 6.6  | 111             | 1.00       | 0.95            | 290.40 | 0.00 | 0.42 | 49                 | -ve      | Unsafe          |
| 46  | GZR-11 | 230   | 7.7     | BDL       | 70                        | 28   | 7    | 100  | 4    | 4    | 2.4  | 26              | 4.00       | 0.77            | 126.50 | 0.00 | 0.20 | 8                  | -ve      | Unsafe          |
| 47  | GZR-12 | 462   | 6.9     | BDL       | 150                       | 48   | 19   | 200  | 20   | 11   | 6.6  | 38              | 3.30       | 0.75            | 254.10 | 0.00 | 0.20 | -ve                | -ve      | Safe            |
| 48  | GZR-13 | 415   | 6.9     | BDL       | 150                       | 56   | 10   | 180  | 10   | 8    | 5.3  | 38              | 0.60       | 0.68            | 228.25 | 0.00 | 0.12 | -ve                | -ve      | Safe            |
| 49  | GZR-14 | 102   | 7.5     | BDL       | 30                        | 12   | 5    | 50   | 6    | 2    | 1.9  | 13              | 0.30       | 0.44            | 56.10  | 0.00 | 0.42 | 2                  | -ve      | Unsafe          |
| 50  | GZR-15 | 78    | 7.4     | BDL       | 20                        | 8    | 5    | 40   | 4    | 0    | 1.4  | 16              | 0.40       | 0.41            | 42.90  | 0.00 | 0.20 | 5                  | -ve      | Unsafe          |
| 51  | GZR-16 | 119   | 7.6     | BDL       | 40                        | 20   | 5    | 70   | BDL  | 0    | 2.0  | 26              | 0.70       | 0.37            | 65.45  | 0.00 | 0.20 | -ve                | -ve      | Safe            |

|     | Sample | E.C   | рН      | Turbidity | HCO <sub>3</sub> /<br>Alk | Ca   | Mg   | Hard | СІ   | Na   | к    | SO₄  | NO₃<br>(N) | PO <sub>4</sub> | TDS    | Fe   | F    | Total<br>Coliforms | E. coli  | Remarks         |
|-----|--------|-------|---------|-----------|---------------------------|------|------|------|------|------|------|------|------------|-----------------|--------|------|------|--------------------|----------|-----------------|
| Sr# | Code   | µS/cm | -       | NTU       | mg/L                      | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L       | mg/L            | mg/L   | mg/L | mg/L | (CFU/ml)           | (CFU/ml) |                 |
|     |        | NGVS  | 6.5-8.5 | 5.00      | NGVS                      | NGVS | NGVS | 500  | 250  | NGVS | NGVS | NGVS | 10.00      | NGVS            | 1000   | 0.30 | 1.50 | 0                  | -ve      | Safe/<br>Unsafe |
| 52  | GZR-17 | 152   | 7.7     | BDL       | 60                        | 20   | 7    | 80   | 4    | 0    | 3.0  | 23   | 0.40       | 0.19            | 83.60  | 0.00 | 0.22 | 3                  | -ve      | Unsafe          |
| 53  | GZR-18 | 288   | 7.6     | BDL       | 70                        | 40   | 2    | 110  | BDL  | 3    | 3.3  | 51   | 0.40       | 0.17            | 158.40 | 0.00 | 0.20 | -ve                | -ve      | Safe            |
| 54  | GZR-19 | 79    | 7.2     | BDL       | 20                        | 12   | 2    | 40   | 4    | 0    | 1.3  | 15   | 0.40       | 0.34            | 43.45  | 0.00 | 0.04 | 9                  | -ve      | Unsafe          |
| 55  | HUN-01 | 497   | 8.1     | 1.20      | 140                       | 40   | 36   | 250  | BDL  | 4    | 1.1  | 106  | 0.30       | 0.00            | 273.35 | 0.09 | 0.30 | -ve                | -ve      | Safe            |
| 56  | HUN-02 | 559   | 7.8     | BDL       | 150                       | 48   | 36   | 270  | BDL  | 4    | 0.7  | 115  | 0.30       | 0.05            | 307.45 | 0.00 | 0.30 | 9                  | -ve      | Unsafe          |
| 57  | HUN-03 | 294   | 7.7     | BDL       | 100                       | 28   | 17   | 140  | BDL  | 3    | 0.5  | 38   | 0.20       | 0.00            | 161.70 | 0.00 | 0.65 | 4                  | -ve      | Unsafe          |
| 58  | HUN-04 | 165   | 7.8     | BDL       | 50                        | 20   | 7    | 80   | BDL  | 3    | 4.7  | 31   | 0.40       | 0.02            | 90.75  | 0.00 | 0.12 | 7                  | -ve      | Unsafe          |
| 59  | HUN-05 | 346   | 7.7     | BDL       | 70                        | 48   | 2    | 130  | 4    | 11   | 7.4  | 71   | 0.40       | 0.16            | 190.30 | 0.36 | 1.20 | -ve                | -ve      | UnSafe          |
| 60  | HUN-06 | 244   | 7.9     | 13.80     | 80                        | 28   | 12   | 120  | 4    | 4    | 2.3  | 35   | 0.30       | 0.17            | 134.20 | 0.00 | 0.30 | 35                 | -ve      | Unsafe          |
| 61  | HUN-07 | 362   | 7.8     | 1.35      | 80                        | 56   | 5    | 160  | BDL  | 4    | 5.0  | 79   | 0.00       | 0.16            | 199.10 | 0.00 | 0.90 | 9                  | -ve      | Unsafe          |
| 62  | HUN-08 | 164   | 7.6     | 6.80      | 20                        | 12   | 10   | 70   | BDL  | 2    | 8.8  | 40   | 6.00       | 2.11            | 90.20  | 0.50 | 0.00 | 14                 | -ve      | Unsafe          |
| 63  | HUN-09 | 141   | 7.8     | 352.00    | 20                        | 12   | 7    | 60   | BDL  | 2    | 7.0  | 35   | 5.00       | 2.27            | 77.55  | 0.39 | 0.00 | 16                 | -ve      | Unsafe          |
| 64  | HUN-10 | 275   | 7.7     | BDL       | 70                        | 28   | 12   | 120  | BDL  | 0    | 2.6  | 53   | 0.30       | 0.06            | 151.25 | 0.00 | 1.00 | -ve                | -ve      | Safe            |
| 65  | HUN-11 | 181   | 8.0     | 83.00     | 40                        | 12   | 15   | 90   | 6    | 0    | 2.0  | 32   | 1.20       | 0.48            | 99.55  | 0.21 | 0.07 | 2                  | -ve      | Unsafe          |
| 66  | HUN-12 | 174   | 7.9     | BDL       | 50                        | 24   | 5    | 80   | BDL  | 0    | 3.8  | 33   | 0.40       | 0.03            | 95.70  | 0.00 | 0.17 | 9                  | -ve      | Unsafe          |
| 67  | HUN-13 | 365   | 7.9     | BDL       | 80                        | 40   | 12   | 150  | BDL  | 3    | 5.3  | 94   | 0.60       | 0.06            | 200.75 | 0.00 | 0.80 | 5                  | -ve      | Unsafe          |
| 68  | HUN-14 | 386   | 7.9     | BDL       | 170                       | 28   | 24   | 170  | BDL  | 8    | 6.8  | 25   | 0.80       | 0.03            | 212.30 | 0.00 | 0.12 | 17                 | -ve      | Unsafe          |
| 69  | HUN-15 | 329   | 7.8     | BDL       | 130                       | 24   | 22   | 150  | 4    | 5    | 5.7  | 29   | 0.80       | 0.00            | 180.95 | 0.00 | 0.11 | 7                  | -ve      | Unsafe          |
| 70  | HUN-16 | 100   | 7.9     | BDL       | 40                        | 16   | 2    | 50   | BDL  | 0    | 1.5  | 11   | 0.30       | 0.00            | 55.00  | 0.55 | 0.12 | -ve                | -ve      | UnSafe          |
| 71  | HUN-17 | 200   | 7.9     | 15.76     | 70                        | 28   | 5    | 90   | BDL  | 0    | 3.2  | 23   | 0.30       | 0.07            | 110.00 | 0.12 | 0.10 | 4                  | -ve      | Unsafe          |
| 72  | HUN-18 | 288   | 7.8     | 10.43     | 90                        | 40   | 7    | 130  | BDL  | 0    | 3.1  | 38   | 0.20       | 0.00            | 158.40 | 0.00 | 1.00 | 7                  | -ve      | Unsafe          |
| 73  | HUN-19 | 292   | 7.6     | BDL       | 120                       | 32   | 17   | 150  | BDL  | 0    | 3.1  | 25   | 0.40       | 0.00            | 160.60 | 0.00 | 0.00 | -ve                | -ve      | Safe            |
| 74  | HUN-20 | 243   | 7.9     | BDL       | 90                        | 40   | 5    | 120  | BDL  | 0    | 2.6  | 29   | 0.40       | 4.00            | 133.65 | 0.00 | 0.11 | -ve                | -ve      | Safe            |
| 75  | GIL-01 | 140   | 7.6     | BDL       | 30                        | 12   | 5    | 50   | BDL  | 11   | 1.7  | 40   | 0.30       | 0.00            | 77.00  | 0.00 | 0.20 | 12                 | -ve      | Unsafe          |
| 76  | GIL-02 | 143   | 7.4     | 7.70      | 60                        | 12   | 10   | 70   | BDL  | 2    | 2.0  | 16   | 0.50       | 0.00            | 78.65  | 0.00 | 0.14 | 2                  | -ve      | Unsafe          |
| 77  | GIL-03 | 100   | 8.9     | 0.55      | 40                        | 8    | 7    | 50   | 4    | 0    | 2.9  | 6    | 0.50       | 0.00            | 55.00  | 0.00 | 0.15 | 4                  | -ve      | Unsafe          |
| 78  | GIL-04 | 243   | 7.5     | BDL       | 100                       | 28   | 10   | 110  | 4    | 3    | 3.3  | 24   | 0.30       | 0.06            | 133.65 | 0.00 | 0.23 | -ve                | -ve      | Safe            |

|            | Sample                        | E.C   | рН      | Turbidity | HCO <sub>3</sub> /<br>Alk | Са   | Mg   | Hard | СІ   | Na   | к    | SO <sub>4</sub> | NO3<br>(N) | PO <sub>4</sub> | TDS    | Fe   | F    | Total<br>Coliforms | E. coli  | Remarks         |
|------------|-------------------------------|-------|---------|-----------|---------------------------|------|------|------|------|------|------|-----------------|------------|-----------------|--------|------|------|--------------------|----------|-----------------|
| Sr#        | Code                          | µS/cm | -       | NTU       | mg/L                      | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L            | mg/L       | mg/L            | mg/L   | mg/L | mg/L | (CFU/ml)           | (CFU/ml) |                 |
|            |                               | NGVS  | 6.5-8.5 | 5.00      | NGVS                      | NGVS | NGVS | 500  | 250  | NGVS | NGVS | NGVS            | 10.00      | NGVS            | 1000   | 0.30 | 1.50 | 0                  | -ve      | Safe/<br>Unsafe |
| 79         | GIL-05                        | 175   | 7.7     | BDL       | 40                        | 24   | 2    | 70   | 10   | 4    | 2.4  | 20              | 0.20       | 0.12            | 96.25  | 0.00 | 0.17 | 2                  | -ve      | Unsafe          |
| 80         | GIL-06                        | 102   | 7.5     | BDL       | 40                        | 8    | 7    | 50   | 6    | 0    | 1.5  | 5               | 0.40       | 0.03            | 56.10  | 0.00 | 0.10 | -ve                | -ve      | Safe            |
| 81         | GIL-07                        | 402   | 7.6     | 1.40      | 170                       | 40   | 22   | 190  | 12   | 5    | 6.0  | 27              | 1.70       | 0.06            | 221.10 | 0.00 | 0.15 | -ve                | -ve      | Safe            |
| 82         | GIL-08                        | 100   | 7.6     | BDL       | 40                        | 12   | 7    | 60   | 6    | 0    | 1.5  | 9               | 0.40       | 0.00            | 55.00  | 0.00 | 0.10 | 8                  | -ve      | Unsafe          |
| 83         | GIL-09                        | 709   | 7.1     | BDL       | 290                       | 80   | 19   | 280  | 24   | 33   | 9.1  | 33              | 5.30       | 0.02            | 389.95 | 0.06 | 0.25 | -ve                | -ve      | Safe            |
| 84         | GIL-10                        | 143   | 7.6     | BDL       | 40                        | 16   | 5    | 60   | 8    | 2    | 2.9  | 20              | 0.40       | 0.03            | 78.65  | 0.00 | 0.17 | 4                  | -ve      | Unsafe          |
| 85         | GIL-11                        | 448   | 7.8     | BDL       | 140                       | 48   | 19   | 200  | 10   | 3    | 6.5  | 55              | 0.50       | 0.01            | 246.40 | 0.00 | 0.30 | 18                 | -ve      | Unsafe          |
| 86         | GIL-12                        | 638   | 7.6     | BDL       | 100                       | 80   | 24   | 300  | 12   | 6    | 6.9  | 214             | 0.30       | 0.02            | 350.90 | 0.00 | 0.45 | 10                 | -ve      | Unsafe          |
| 87         | GIL-13                        | 862   | 7.5     | BDL       | 100                       | 108  | 39   | 430  | 12   | 3    | 20.0 | 310             | 0.40       | 0.00            | 474.10 | 0.52 | 0.50 | -ve                | -ve      | UnSafe          |
| 88         | GIL-14                        | 365   | 7.9     | 19.30     | 60                        | 2    | 35   | 150  | 8    | 2    | 6.4  | 96              | 0.40       | 0.04            | 200.75 | 0.00 | 0.22 | 4                  | -ve      | Unsafe          |
| 89         | GIL-15                        | 345   | 7.8     | BDL       | 130                       | 40   | 17   | 170  | 6    | 5    | 9.3  | 38              | 0.10       | 0.07            | 189.75 | 0.00 | 0.30 | 2                  | -ve      | Unsafe          |
| 90         | GIL-16                        | 312   | 7.8     | 35.50     | 60                        | 28   | 22   | 160  | 6    | 0    | 3.0  | 94              | 0.90       | 0.23            | 171.60 | 0.32 | 0.11 | 15                 | -ve      | Unsafe          |
| 91         | GIL-17                        | 193   | 7.7     | 64.00     | 80                        | 24   | 10   | 100  | 4    | 0    | 2.9  | 13              | 1.20       | 0.35            | 106.15 | 0.42 | 0.00 | -ve                | -ve      | UnSafe          |
| 92         | GIL-18                        | 341   | 7.7     | BDL       | 60                        | 78   | BDL  | 196  | 8    | 6    | 5.3  | 78              | 0.30       | 0.46            | 187.55 | 0.00 | 0.26 | -ve                | -ve      | Safe            |
| 93         | GIL-19                        | 283   | 7.7     | 270.00    | 70                        | 40   | 10   | 140  | 6    | 0    | 3.4  | 46              | 3.50       | 0.49            | 155.65 | 1.49 | 0.00 | 3                  | -ve      | Unsafe          |
| 94         | GIL-20                        | 502   | 7.5     | BDL       | 150                       | 56   | 22   | 230  | 16   | 7    | 8.2  | 79              | 0.70       | 0.21            | 276.10 |      |      | -ve                | -ve      | Safe            |
| Minimum    |                               | 44    | 6.5     | 0.04      | 10                        | 2    | 2    | 10   | 4    | 0    | 0.2  | 0               | 0.00       | 0.00            | 24.00  |      |      | 2                  |          |                 |
| Average    |                               | 256   | 7.6     | 23.73     | 78                        | 30   | - 11 | 117  | 9    | 4    | 3.7  | 38              | 0.81       | 0.32            | 140.67 |      |      | - 12               |          |                 |
| Maximum    |                               | 1093  | 8.9     | 352.00    | 350                       | 160  | 44   | 470  | 28   | 35   | 20.0 | 310             | 8.00       | 4.00            | 601.00 |      |      | 49                 |          |                 |
| No. of sam | ples beyond permissible limit |       | 1       | 18        |                           |      |      | 0    | 0    |      |      |                 | 0          |                 | 0      | 23   | 2    | 64                 | 0        | 73              |

\*BDL: Below Detection Limit

#### Annexure-IV

## Test results of Trace/Heavy Metals

|       |                | AI    | As    | Ba    | Cd   | Со   | Cr   | Cu   | Mn   | Мо    | Ni   | Pb   | Sr     | Zn    |
|-------|----------------|-------|-------|-------|------|------|------|------|------|-------|------|------|--------|-------|
| Sr. # | Sample<br>Code | µg/l  | µg/l  | µg/l  | µg/l | µg/l | µg/l | µg/l | µg/l | µg/l  | µg∕l | µg/l | µg/l   | µg/l  |
|       |                | 200   | 50    | 700   | 10   | NGVS | 50   | 1500 | 500  | NGVS  | 20   | 50   | NGVS   | 5000  |
| 1     | DIA-01         | 4.76  | 2.72  | 2.63  | 0.16 | 0.55 | BDL  | 0.96 |      | BDL   | BDL  | BDL  | 54.51  | 11.21 |
| 2     | DIA-02         | 2.53  | 7.69  | 2.55  | BDL  | 0.9  | BDL  | 1.04 | 0.24 | 0.82  | BDL  | 1.56 | 54.14  | 19.38 |
| 3     | DIA-03         | 2.88  | BDL   | 12.31 | BDL  | 1.29 | BDL  | 1.59 |      | 2.89  | BDL  | 0.31 | 184.73 | 2.8   |
| 4     | DIA-04         | 7.73  | 5.45  | 14.27 | 0.07 | 1.83 | 0.61 | 1.27 | 0    | 20.77 | BDL  | 0.64 | 250.45 | BDL   |
| 5     | DIA-05         | 4.89  | 3.85  | 1.41  | 0.02 | 1.31 | 0.73 | 0.83 |      | 0.69  | BDL  | 3.79 | 20.82  | BDL   |
| 6     | DIA-06         | 2.8   | 4.56  | 27.74 | 0.05 | 1.07 | BDL  | 1.4  | 0.12 | 1.14  | BDL  | BDL  | 72.24  | BDL   |
| 7     | DIA-07         | 3.83  | 1.67  | 4.78  | 0.12 | 1.17 | BDL  | 1.11 |      | 0.32  | 0.28 | 1.97 | 52.21  | 9.82  |
| 8     | DIA-08         | 12.88 | 3.75  | 8.16  | 0.01 | 1.01 | BDL  | 1.01 | 0    | 0.72  | BDL  | 0.70 | 83.78  | BDL   |
| 9     | DIA-09         | 11.75 | 9.73  | 6.7   | 0.03 | 1.27 | BDL  | 1.27 |      | 5.2   | BDL  | 1.82 | 111.64 | BDL   |
| 10    | AST-01         | 7.75  | 20.16 | 2.2   | 0    | 1.04 | BDL  | 1.11 | 0.17 | 6.73  | BDL  | 0.95 | 15.83  | 3.11  |
| 11    | AST-02         | 4.87  | 8.71  | 6.59  | BDL  | 1.13 | 0.22 | 1.49 |      | 10.37 | 0.31 | 3.04 | 70.4   | BDL   |
| 12    | AST-03         | 6.81  | 28.91 | 3.83  | 0.02 | 1.6  | 0.16 | 0.77 | 0.02 | 8.23  | BDL  | 2.07 | 20.33  | 18.54 |
| 13    | AST-04         | 4.71  | 6     | 2.33  | 0.03 | 0.96 | BDL  | 0.7  |      | 1.52  | 0.25 | 0.90 | 14.85  | 0.35  |
| 14    | AST-05         | 2.91  | BDL   | 5.11  | BDL  | 1.53 | 0.07 | 0.79 | 0.14 | 3.48  | BDL  | BDL  | 81.36  | 6.42  |
| 15    | AST-06         | 9.19  | 4.61  | 8.84  | BDL  | 1.02 | BDL  | 0.91 |      | 1.54  | BDL  | 0.43 | 94.13  | 0.01  |
| 16    | AST-07         | 3.82  | 6.8   | 13.33 | BDL  | 1.28 | BDL  | 1.23 | 1.04 | 1.75  | BDL  | 2.00 | 144.88 | 9.28  |
| 17    | AST-08         | 6.96  | 1.72  | 1.35  | 0.19 | 0.53 | BDL  | 0.67 |      | 0.21  | BDL  | BDL  | 10.42  | BDL   |
| 18    | AST-09         | 13.23 | BDL   | 3.09  | BDL  | 1.01 | BDL  | 1.14 | 0.07 | 1.15  | BDL  | 0.41 | 9.81   | 4.2   |
| 19    | AST-10         | 2.46  | BDL   | 3.55  | BDL  | 1.06 | BDL  | 0.64 |      | BDL   | 0.07 | 0.27 | 43.86  | BDL   |
| 20    | AST-11         | 12.25 | 0.85  | 20.02 | BDL  | 1.35 | 0.34 | 1.35 | 1.09 | BDL   | 0.54 | 1.92 | 236.92 | BDL   |
| 21    | SKA-01         | 7.01  | 14.87 | 4.64  | 0    | 0.63 | BDL  | 1.31 |      | 2.51  | BDL  | 0.72 | 69.65  | BDL   |
| 22    | SKA-02         | 8.2   | 6.04  | 9.41  | 0.06 | 1.95 | 0.06 | 2.52 | 0.03 | 1.41  | BDL  | 1.44 | 143.73 | 3.01  |
| 23    | SKA-03         | 9.08  | 14.64 | 4.62  | 0.05 | 1.69 | BDL  | 0.95 |      | 2.28  | BDL  | BDL  | 68.95  | BDL   |
| 24    | SKA-04         | 9.73  | 15.04 | 4.68  | BDL  | 1.25 | BDL  | 1.09 | 0.01 | 2.42  | BDL  | BDL  | 66.04  | 1.19  |
| 25    | SKA-05         | 4.86  | 14    | 53.93 | BDL  | 1.83 | 0.02 | 1.78 |      | 5.37  | 0.51 | 1.97 | 365.82 | BDL   |
|       |                |       |       |       |      |      |      |      |      |       |      |      |        |       |

|       |                | AI     | As    | Ba     | Cd   | Со   | Cr   | Cu   | Mn   | Мо    | Ni   | Pb   | Sr     | Zn    |
|-------|----------------|--------|-------|--------|------|------|------|------|------|-------|------|------|--------|-------|
| Sr. # | Sample<br>Code | µg/l   | µg/l  | µg/l   | µg/l | µg/I | µg/l | µg/l | µg/l | µg/l  | µg∕l | µg/l | µg/l   | µg∕l  |
|       |                | 200    | 50    | 700    | 10   | NGVS | 50   | 1500 | 500  | NGVS  | 20   | 50   | NGVS   | 5000  |
| 26    | SKA-06         | 5.3    | 43.22 | 101.53 | BDL  | 1.41 | BDL  | 1.05 | 1.91 | 7.55  | BDL  | 0.61 | 180.68 | BDL   |
| 27    | SKA-07         | 6.53   | 1.05  | 3.98   | BDL  | 0.79 | BDL  | 0.84 |      | 1.96  | 0.02 | BDL  | 53.98  | BDL   |
| 28    | SKA-08         | 1.87   | 1.48  | 3.81   | 0.05 | 1.44 | BDL  | 0.65 | 0.08 | 1.02  | BDL  | 2.21 | 39.89  | 5.68  |
| 29    | SKA-09         | 5.15   | BDL   | 4.2    | 0.17 | 0.57 | BDL  | 3.33 |      | 0.69  | BDL  | 1.13 | 53.44  | 2.68  |
| 30    | SKA-10         | 5.03   | 0.76  | 2.64   | BDL  | 1.44 | BDL  | 0.95 | 0.18 | 0.05  | BDL  | 0.82 | 73.7   | 0.51  |
| 31    | SKA-11         | 19.88  | 7.62  | 17.63  | BDL  | 1.11 | BDL  | 1.04 |      | 1.68  | 0.42 | BDL  | 157.09 | BDL   |
| 32    | SKA-12         | 7.87   | 1.83  | 11.35  | BDL  | 1.22 | BDL  | 2.02 | 0.02 | 1.79  | BDL  | 3.23 | 57.15  | 5.57  |
| 33    | SKA-13         | 7.61   | BDL   | 33.08  | 0.06 | 1.45 | BDL  | 1.67 |      | 11.4  | BDL  | 0.16 | 119.96 | 46.14 |
| 34    | SKA-14         | 8.84   | 10.66 | 6.9    | BDL  | 0.93 | BDL  | 1.4  | 0.14 | 5.26  | BDL  | BDL  | 77.88  | BDL   |
| 35    | SKA-15         | 186.93 | 6.57  | 12.58  | BDL  | 1.01 | 0.39 | 1.55 |      | 0.13  | 0.13 | 1.27 | 264.19 | BDL   |
| 36    | GZR-01         | 19.81  | 7     | 5.66   | 0.07 | BDL  | BDL  | BDL  | 0.43 | 4.48  | BDL  | BDL  | BDL    | BDL   |
| 37    | GZR-02         | 6.86   | 1     | 4.21   | BDL  | 0.18 | BDL  | BDL  |      | 3.54  | BDL  | BDL  | BDL    | BDL   |
| 38    | GZR-03         | 11.93  | BDL   | 2.55   | BDL  | BDL  | BDL  | BDL  | BDL  | 4.78  | BDL  | BDL  | BDL    | BDL   |
| 39    | GZR-04         | 8.77   | BDL   | 1.1    | 0.22 | 0.16 | BDL  | BDL  |      | 2.29  | BDL  | BDL  | BDL    | BDL   |
| 40    | GZR-05         | 6.03   | BDL   | 4.19   | BDL  | BDL  | BDL  | BDL  | BDL  | 1.32  | BDL  | BDL  | BDL    | BDL   |
| 41    | GZR-06         | 7.3    | BDL   | 4.14   | BDL  | 0.51 | BDL  | BDL  |      | 1.58  | BDL  | BDL  | BDL    | BDL   |
| 42    | GZR-07         | 11.58  | 1.3   | 1.01   | BDL  | 0.36 | BDL  | BDL  | BDL  | 3.74  | BDL  | BDL  | BDL    | BDL   |
| 43    | GZR-08         | 27.97  | BDL   | 11.75  | 0.02 | BDL  | BDL  | BDL  |      | 3.64  | BDL  | BDL  | BDL    | BDL   |
| 44    | GZR-09         | 30.4   | 2.2   | 2.3    | BDL  | 0.36 | BDL  | BDL  | BDL  | 1.13  | 1.02 | BDL  | BDL    | BDL   |
| 45    | GZR-10         | 9.94   | BDL   | 18.82  | BDL  | 0.57 | BDL  | BDL  |      | 16.69 | BDL  | BDL  | BDL    | BDL   |
| 46    | GZR-11         | 10.11  | BDL   | 5.16   | BDL  | 0.73 | BDL  | BDL  | BDL  | 6     | BDL  | BDL  | BDL    | BDL   |
| 47    | GZR-12         | 8.3    | BDL   | 38.68  | BDL  | 0.18 | BDL  | BDL  |      | 2.94  | BDL  | BDL  | BDL    | BDL   |
| 48    | GZR-13         | 8.89   | BDL   | 12.17  | BDL  | BDL  | BDL  | BDL  | BDL  | 3.12  | BDL  | BDL  | BDL    | BDL   |
| 49    | GZR-14         | 9.41   | BDL   | 0.14   | BDL  | 0.24 | BDL  | BDL  |      | 4.78  | BDL  | BDL  | BDL    | BDL   |
| 50    | GZR-15         | 9.98   | BDL   | 5.2    | BDL  | 0.03 | BDL  | BDL  | BDL  | 1.07  | BDL  | BDL  | BDL    | BDL   |
| 51    | GZR-16         | 10.31  | BDL   | 3.92   | BDL  | BDL  | BDL  | BDL  |      | 4.66  | BDL  | BDL  | BDL    | BDL   |
| 52    | GZR-17         | 8.89   | 0.9   | 4.23   | BDL  | BDL  | BDL  | BDL  | BDL  | 6.77  | BDL  | BDL  | BDL    | BDL   |
| 53    | GZR-18         | 11.93  | 0.7   | 15.64  | BDL  | 0.12 | BDL  | BDL  |      | 6.75  | BDL  | BDL  | BDL    | BDL   |
|       |                |        |       |        |      |      |      |      |      |       |      |      |        |       |

|       |                | AI      | As   | Ba    | Cd   | Со   | Cr   | Cu   | Mn    | Мо     | Ni   | Pb   | Sr   | Zn   |
|-------|----------------|---------|------|-------|------|------|------|------|-------|--------|------|------|------|------|
| Sr. # | Sample<br>Code | µg/l    | µg∕l | µg/l  | µg/l | µg/l | µg/l | µg/l | µg/l  | µg/l   | µg/l | µg/l | µg/l | µg/l |
|       |                | 200     | 50   | 700   | 10   | NGVS | 50   | 1500 | 500   | NGVS   | 20   | 50   | NGVS | 5000 |
| 54    | GZR-19         | 5.62    | 0.7  | 2.54  | 0    | 0.38 | BDL  | BDL  | BDL   | 4.56   | BDL  | BDL  | BDL  | BDL  |
| 55    | HUN-01         | 24.16   | 0.5  | 19.77 | BDL  | 0.93 | BDL  | BDL  |       | 1.1    | BDL  | BDL  | BDL  | BDL  |
| 56    | HUN-02         | 10.56   | 0.5  | 13.24 | BDL  | 1.1  | BDL  | BDL  | BDL   | 1.95   | BDL  | BDL  | BDL  | BDL  |
| 57    | HUN-03         | 8.31    | BDL  | 8.73  | BDL  | 1.16 | BDL  | BDL  |       | 10.98  | BDL  | BDL  | BDL  | BDL  |
| 58    | HUN-04         | 9.9     | 9.5  | 3.7   | BDL  | BDL  | BDL  | BDL  | BDL   | 18.53  | BDL  | BDL  | BDL  | BDL  |
| 59    | HUN-05         | 11.72   | 1.6  | 24.41 | BDL  | BDL  | BDL  | BDL  |       | 112.46 | BDL  | BDL  | BDL  | BDL  |
| 60    | HUN-06         | 52.65   | 4.4  | 8.29  | BDL  | BDL  | BDL  | BDL  | 0.35  | 5.82   | BDL  | BDL  | BDL  | BDL  |
| 61    | HUN-07         | 11.08   | 1.6  | 8.71  | 0.07 | 0.57 | BDL  | BDL  |       | 2.96   | BDL  | BDL  | BDL  | BDL  |
| 62    | HUN-08         | 1487.16 | BDL  | 70.98 | 0.42 | BDL  | BDL  | BDL  | 46.89 | 6.26   | 0.35 | BDL  | BDL  | BDL  |
| 63    | HUN-09         | 1299.54 | BDL  | 54.47 | 0.33 | 0.09 | BDL  | BDL  |       | 5.74   | BDL  | BDL  | BDL  | BDL  |
| 64    | HUN-10         | 9.7     | 21   | 1.67  | BDL  | 0.1  | BDL  | BDL  | 0.48  | 2.92   | BDL  | BDL  | BDL  | BDL  |
| 65    | HUN-11         | 667.05  | 8    | 9.67  | 0.32 | BDL  | 1.41 | BDL  |       | 0.61   | 2.12 | BDL  | BDL  | BDL  |
| 66    | HUN-12         | 11.65   | 15.8 | 15.59 | 0.05 | 0.76 | BDL  | BDL  | BDL   | 4.6    | BDL  | BDL  | BDL  | BDL  |
| 67    | HUN-13         | 11.45   | 3    | 6.03  | 0.2  | 1.12 | BDL  | BDL  |       | 57.54  | BDL  | BDL  | BDL  | BDL  |
| 68    | HUN-14         | 12.65   | 1.8  | 23.04 | 0.17 | 0.57 | BDL  | BDL  | BDL   | 6.48   | BDL  | BDL  | BDL  | BDL  |
| 69    | HUN-15         | 12.64   | 0.6  | 30.7  | BDL  | 0.97 | BDL  | BDL  |       | 5.83   | BDL  | BDL  | BDL  | BDL  |
| 70    | HUN-16         | 130.71  | 0.07 | 9.21  | 0.26 | BDL  | BDL  | BDL  | 1.95  | 1.38   | BDL  | BDL  | BDL  | BDL  |
| 71    | HUN-17         | 104.49  | BDL  | 28.29 | BDL  | BDL  | BDL  | BDL  |       | 1.54   | BDL  | BDL  | BDL  | BDL  |
| 72    | HUN-18         | 35.76   | BDL  | 11.02 | BDL  | BDL  | BDL  | BDL  | 0.58  | 3.26   | BDL  | BDL  | BDL  | BDL  |
| 73    | HUN-19         | 174.78  | BDL  | 12.06 | 0.06 | BDL  | BDL  | BDL  |       | 2.42   | BDL  | BDL  | BDL  | BDL  |
| 74    | HUN-20         | 13.05   | 1.3  | 23.19 | BDL  | 0.16 | BDL  | BDL  | BDL   | 2.46   | BDL  | BDL  | BDL  | BDL  |
| 75    | GIL-01         | 15.78   | 1.7  | 1.33  | BDL  | 0.57 | BDL  | BDL  |       | 12.55  | BDL  | BDL  | BDL  | BDL  |
| 76    | GIL-02         | 10.34   | BDL  | 12.17 | 0.01 | BDL  | BDL  | BDL  | BDL   | 1.58   | BDL  | BDL  | BDL  | BDL  |
| 77    | GIL-03         | 46.47   | BDL  | 10.05 | BDL  | 0.28 | BDL  | BDL  |       | 0.05   | BDL  | BDL  | BDL  | BDL  |
| 78    | GIL-04         | 24.22   | BDL  | 13.88 | BDL  | BDL  | BDL  | BDL  | BDL   | 5.53   | BDL  | BDL  | BDL  | BDL  |
| 79    | GIL-05         | 11.17   | BDL  | 12.92 | BDL  | 0.77 | BDL  | BDL  |       | 3.32   | BDL  | BDL  | BDL  | BDL  |
| 80    | GIL-06         | 13.44   | 1.6  | 5.7   | BDL  | BDL  | BDL  | BDL  | BDL   | 2.03   | BDL  | BDL  | BDL  | BDL  |
| 81    | GIL-07         | 11.15   | 0.18 | 16.29 | BDL  | 0.12 | BDL  | BDL  |       | 3.11   | BDL  | BDL  | BDL  | BDL  |
|       |                |         |      |       |      |      |      |      |       |        |      |      |      |      |

|                                         |                | AI                | As   | Ba    | Cd   | Со   | Cr   | Cu   | Mn    | Мо    | Ni   | Pb   | Sr   | Zn   |
|-----------------------------------------|----------------|-------------------|------|-------|------|------|------|------|-------|-------|------|------|------|------|
| Sr. #                                   | Sample<br>Code | µg/l              | µg∕l | µg/l  | µg/l | µg/l | µg/l | µg/l | µg/l  | µg/l  | µg∕l | µg/l | µg/l | µg/l |
|                                         |                | 200               | 50   | 700   | 10   | NGVS | 50   | 1500 | 500   | NGVS  | 20   | 50   | NGVS | 5000 |
| 82                                      | GIL-08         | 17.15             | BDL  | 5.17  | 0.02 | 0.12 | BDL  | BDL  | 0.11  | 1.76  | BDL  | BDL  | BDL  | BDL  |
| 83                                      | GIL-09         | 10.31             | BDL  | 40.56 | BDL  | BDL  | BDL  | BDL  |       | 9.66  | BDL  | BDL  | BDL  | BDL  |
| 84                                      | GIL-10         | 8.89              | BDL  | 4.35  | BDL  | 0.09 | BDL  | BDL  | BDL   | 3.59  | BDL  | BDL  | BDL  | BDL  |
| 85                                      | GIL-11         | 12.97             | BDL  | 18.09 | BDL  | BDL  | BDL  | BDL  |       | 5.74  | BDL  | BDL  | BDL  | BDL  |
| 86                                      | GIL-12         | 11.83             | BDL  | 14.27 | BDL  | 1.07 | BDL  | BDL  | BDL   | 16.86 | BDL  | BDL  | BDL  | BDL  |
| 87                                      | GIL-13         | 11.29             | BDL  | 13.23 | BDL  | 0.46 | BDL  | BDL  |       | 61.77 | BDL  | BDL  | BDL  | BDL  |
| 88                                      | GIL-14         | 35.32             | BDL  | 23.75 | BDL  | 0.91 | BDL  | BDL  | 0.17  | 5.63  | BDL  | BDL  | BDL  | BDL  |
| 89                                      | GIL-15         | 2.03              | BDL  | 0.83  | BDL  | 0.32 | BDL  | BDL  |       | BDL   | BDL  | BDL  | BDL  | BDL  |
| 90                                      | GIL-16         | 644.88            | BDL  | 12.28 | 0.07 | BDL  | 3.96 | BDL  | 17.22 | 7.87  | BDL  | BDL  | BDL  | BDL  |
| 91                                      | GIL-17         | 631.05            | 0.99 | 11.13 | BDL  | BDL  | 1.43 | BDL  |       | 3.66  | 0.14 | BDL  | BDL  | BDL  |
| 92                                      | GIL-18         | 22.13             | BDL  | 12.55 | BDL  | 0.19 | BDL  | BDL  | BDL   | 5.51  | BDL  | BDL  | BDL  | BDL  |
| 93                                      | GIL-19         | 811.09            | BDL  | 12.83 | BDL  | BDL  | 5.35 | BDL  |       | 6.56  | BDL  | BDL  | BDL  | BDL  |
| 94                                      | GIL-20         | 12.48             | BDL  | 20.26 | BDL  | 0.87 | BDL  | BDL  | BDL   | 6.69  | BDL  | BDL  | BDL  | BDL  |
| Minimum                                 |                | 2                 | 0    | 0.14  | 0.00 | 0    | 0    | 1    | 0     | 0     | 0    | 0    | 10   | 0    |
| Average                                 |                | 75.64             | 6    |       | 0.10 | 1    | 1    |      | 2.82  | 7     | 0    |      | 98   | 8    |
| Maximum                                 |                | 1487              | 43   | 102   | 0    | 2    | 5    | 3    | 47    | 112   | 2    | 4    | 366  | 46   |
| No. of samples beyond permissible limit |                | it <mark>6</mark> | 0    | 0     | 0    |      | 0    | 0    | 0     |       | 0    | 0    |      | 0    |

### Annexure-V

#### Enhancement of Testing Capability in Gilgit Water Quality Laboratory:

Up gradation of Gilgit laboratory is done for microbiological analysis i.e. Total Coliforms, Fecal Coliforms and E-coli. Culture media, chemicals, Filtration assembly, glassware and other supplies required for the testing were installed. Training of WQL Gilgit staff was conducted for Microbial testing in field as well as in laboratory, for testing of Total Coliforms, Fecal Coliforms and E-coli. Detailed training of WQL staff is conducted for sterilization, media preparation, use of autoclave, inoculation of water samples using membrane filtration technique, reporting of results and proper disposal of contaminated material.





Microbiological analysis training in Gilgit (WQL)

#### **Establishment of Research Information Cell:**

For the setting of research information cell (RIC) linkage was developed between PCRWR, GIIgit (WQL) and Karakoram University. Research publication of PCRWR and other organizations were arranged and proper catalogue is maintained to facilitate students for their research.

